These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30997000)

  • 21. A Low-Temperature Molecular Precursor Approach to Copper-Based Nano-Sized Digenite Mineral for Efficient Electrocatalytic Oxygen Evolution Reaction.
    Chakraborty B; Kalra S; Beltrán-Suito R; Das C; Hellmann T; Menezes PW; Driess M
    Chem Asian J; 2020 Mar; 15(6):852-859. PubMed ID: 32011083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterostructure of NiFe@NiCr-LDH for Active and Durable Oxygen Evolution Reactions in Alkaline Media.
    Liu S; Tang Y; Guo C; Liu Y; Tang Z
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Revealing the pH-Universal Electrocatalytic Activity of Co-Doped RuO
    Madhu R; Karmakar A; Kumaravel S; Sankar SS; Bera K; Nagappan S; Dhandapani HN; Kundu S
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1077-1091. PubMed ID: 34951298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte.
    Qiu Y; Xin L; Li W
    Langmuir; 2014 Jul; 30(26):7893-901. PubMed ID: 24914708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Iron-Cobalt Phosphomolybdate with High Electrocatalytic Activity for Oxygen Evolution Reaction.
    Zhai H; Gao T; Qi T; Zhang Y; Zeng G; Xiao D
    Chem Asian J; 2017 Oct; 12(20):2694-2702. PubMed ID: 28816017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved oxygen evolution activity of IrO
    Zhong W; Lin Z; Feng S; Wang D; Shen S; Zhang Q; Gu L; Wang Z; Fang B
    Nanoscale; 2019 Mar; 11(10):4407-4413. PubMed ID: 30801572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergistic effects of Co/CoO nanoparticles on imine-based covalent organic frameworks for enhanced OER performance.
    Ye X; Fan J; Min Y; Shi P; Xu Q
    Nanoscale; 2021 Sep; 13(35):14854-14865. PubMed ID: 34533186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stabilizing Hydrous β-NiOOH for Efficient Electrocatalytic Water Oxidation by Integrating Y and Co into Amorphous Ni-Based Nanoparticles.
    Cole KM; Abed J; Kirk DW; Thorpe SJ
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58682-58690. PubMed ID: 34860485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetocaloric effect in AlFe2B2: toward magnetic refrigerants from earth-abundant elements.
    Tan X; Chai P; Thompson CM; Shatruk M
    J Am Chem Soc; 2013 Jun; 135(25):9553-7. PubMed ID: 23731263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strongly Coupled CoO Nanoclusters/CoFe LDHs Hybrid as a Synergistic Catalyst for Electrochemical Water Oxidation.
    Gao ZW; Ma T; Chen XM; Liu H; Cui L; Qiao SZ; Yang J; Du XW
    Small; 2018 Apr; 14(17):e1800195. PubMed ID: 29577621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assembly of ZIF-67 nanoparticles and
    Ye L; Zhang Y; Wang L; Zhao L; Gong Y
    Dalton Trans; 2021 Jun; 50(21):7256-7264. PubMed ID: 33960361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hollow FeP/Fe
    Yu J; Zhang T; Sun Y; Li X; Li X; Wu B; Men D; Li Y
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12783-12792. PubMed ID: 32108463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ce-Doped Ordered Mesoporous Cobalt Ferrite Phosphides as Robust Catalysts for Water Oxidation.
    Huang Y; Li M; Yang W; Yu Y; Hao S
    Chemistry; 2020 Oct; 26(58):13305-13310. PubMed ID: 32666610
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrothermal synthesis of delafossite CuScO
    Deng Y; Xiong D; Gao H; Wu J; Verma SK; Liu B; Zhao X
    Dalton Trans; 2020 Mar; 49(11):3519-3524. PubMed ID: 32107507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Situ Formation of Nano Ni-Co Oxyhydroxide Enables Water Oxidation Electrocatalysts Durable at High Current Densities.
    Abed J; Ahmadi S; Laverdure L; Abdellah A; O'Brien CP; Cole K; Sobrinho P; Sinton D; Higgins D; Mosey NJ; Thorpe SJ; Sargent EH
    Adv Mater; 2021 Nov; 33(45):e2103812. PubMed ID: 34541731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low Ruthenium Content Confined on Boron Carbon Nitride as an Efficient and Stable Electrocatalyst for Acidic Oxygen Evolution Reaction.
    Bai X; Zhang X; Sun Y; Huang M; Fan J; Xu S; Li H
    Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202308704. PubMed ID: 37489759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing the Overall Electrocatalytic Water-Splitting Efficiency of Mo
    Ali M; Pervaiz E; Rabi O
    ACS Omega; 2021 Dec; 6(50):34219-34228. PubMed ID: 34963908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rationally designed Water-Insertable Layered Oxides with Synergistic Effect of Transition-Metal Elements for High-Performance Oxygen Evolution Reaction.
    Chu S; Sun H; Chen G; Chen Y; Zhou W; Shao Z
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25227-25235. PubMed ID: 31264838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual-oxidation-induced lattice disordering in a Prussian blue analog for ultrastable oxygen evolution reaction performance.
    Kang L; Li J; Wang Y; Gao W; Hao P; Lei F; Xie J; Tang B
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):257-265. PubMed ID: 36242885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.