These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30997511)

  • 1. 'Why genes in pieces?'-revisited.
    Smithers B; Oates M; Gough J
    Nucleic Acids Res; 2019 Jun; 47(10):4970-4973. PubMed ID: 30997511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein domains correlate strongly with exons in multiple eukaryotic genomes--evidence of exon shuffling?
    Liu M; Grigoriev A
    Trends Genet; 2004 Sep; 20(9):399-403. PubMed ID: 15313546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intron-exon structures of eukaryotic model organisms.
    Deutsch M; Long M
    Nucleic Acids Res; 1999 Aug; 27(15):3219-28. PubMed ID: 10454621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rarity of gene shuffling in conserved genes.
    Conant GC; Wagner A
    Genome Biol; 2005; 6(6):R50. PubMed ID: 15960802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signs of ancient and modern exon-shuffling are correlated to the distribution of ancient and modern domains along proteins.
    Vibranovski MD; Sakabe NJ; de Oliveira RS; de Souza SJ
    J Mol Evol; 2005 Sep; 61(3):341-50. PubMed ID: 16034650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of evolution of exon-intron structure of eukaryotic genes.
    Rogozin IB; Sverdlov AV; Babenko VN; Koonin EV
    Brief Bioinform; 2005 Jun; 6(2):118-34. PubMed ID: 15975222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whence genes in pieces: reconstruction of the exon-intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes.
    Koonin EV; Csuros M; Rogozin IB
    Wiley Interdiscip Rev RNA; 2013; 4(1):93-105. PubMed ID: 23139082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed evolution of proteins by exon shuffling.
    Kolkman JA; Stemmer WP
    Nat Biotechnol; 2001 May; 19(5):423-8. PubMed ID: 11329010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An overabundance of phase 0 introns immediately after the start codon in eukaryotic genes.
    Nielsen H; Wernersson R
    BMC Genomics; 2006 Oct; 7():256. PubMed ID: 17034638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signatures of domain shuffling in the human genome.
    Kaessmann H; Zöllner S; Nekrutenko A; Li WH
    Genome Res; 2002 Nov; 12(11):1642-50. PubMed ID: 12421750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary implications of intron-exon distribution and the properties and sequences of the RPL10A gene in eukaryotes.
    Del Campo EM; Casano LM; Barreno E
    Mol Phylogenet Evol; 2013 Mar; 66(3):857-67. PubMed ID: 23201395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exon/intron structure of aldehyde dehydrogenase genes supports the "introns-late" theory.
    Rzhetsky A; Ayala FJ; Hsu LC; Chang C; Yoshida A
    Proc Natl Acad Sci U S A; 1997 Jun; 94(13):6820-5. PubMed ID: 9192649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary history of exon shuffling.
    França GS; Cancherini DV; de Souza SJ
    Genetica; 2012 Jun; 140(4-6):249-57. PubMed ID: 22948334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of splice signal migration from exon to intron during intron evolution.
    Sverdlov AV; Rogozin IB; Babenko VN; Koonin EV
    Curr Biol; 2003 Dec; 13(24):2170-4. PubMed ID: 14680632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach to investigate the evolution of structured tandem repeat protein families by exon duplication.
    Paladin L; Necci M; Piovesan D; Mier P; Andrade-Navarro MA; Tosatto SCE
    J Struct Biol; 2020 Nov; 212(2):107608. PubMed ID: 32896658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How are exons encoding transmembrane sequences distributed in the exon-intron structure of genes?
    Sawada R; Mitaku S
    Genes Cells; 2011 Jan; 16(1):115-21. PubMed ID: 21143351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exon Elongation Added Intrinsically Disordered Regions to the Encoded Proteins and Facilitated the Emergence of the Last Eukaryotic Common Ancestor.
    Fukuchi S; Noguchi T; Anbo H; Homma K
    Mol Biol Evol; 2023 Jan; 40(1):. PubMed ID: 36529689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetically older introns strongly correlate with module boundaries in ancient proteins.
    Fedorov A; Roy S; Cao X; Gilbert W
    Genome Res; 2003 Jun; 13(6A):1155-7. PubMed ID: 12743017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exon shuffling and other ways of module exchange.
    Patthy L
    Matrix Biol; 1996 Nov; 15(5):301-10; discussion 311-2. PubMed ID: 8981326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of EF-hand calcium-modulated proteins. IV. Exon shuffling did not determine the domain compositions of EF-hand proteins.
    Kretsinger RH; Nakayama S
    J Mol Evol; 1993 May; 36(5):477-88. PubMed ID: 8510180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.