These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 30997691)
1. Quantile regression and empirical likelihood for the analysis of longitudinal data with monotone missing responses due to dropout, with applications to quality of life measurements from clinical trials. Lv Y; Qin G; Zhu Z; Tu D Stat Med; 2019 Jul; 38(16):2972-2991. PubMed ID: 30997691 [TBL] [Abstract][Full Text] [Related]
2. Efficient quantile marginal regression for longitudinal data with dropouts. Cho H; Hong HG; Kim MO Biostatistics; 2016 Jul; 17(3):561-75. PubMed ID: 26951723 [TBL] [Abstract][Full Text] [Related]
3. Quantile regression for incomplete longitudinal data with selection by death. Jacqmin-Gadda H; Rouanet A; Mba RD; Philipps V; Dartigues JF Stat Methods Med Res; 2020 Sep; 29(9):2697-2716. PubMed ID: 32180497 [TBL] [Abstract][Full Text] [Related]
4. Weighted quantile regression for analyzing health care cost data with missing covariates. Sherwood B; Wang L; Zhou XH Stat Med; 2013 Dec; 32(28):4967-79. PubMed ID: 23836597 [TBL] [Abstract][Full Text] [Related]
5. Empirical-likelihood-based criteria for model selection on marginal analysis of longitudinal data with dropout missingness. Chen C; Shen B; Zhang L; Xue Y; Wang M Biometrics; 2019 Sep; 75(3):950-965. PubMed ID: 31004449 [TBL] [Abstract][Full Text] [Related]
6. Quantile difference estimation with censoring indicators missing at random. Kong CJ; Liang HY Lifetime Data Anal; 2024 Apr; 30(2):345-382. PubMed ID: 38238637 [TBL] [Abstract][Full Text] [Related]
7. An alternative empirical likelihood method in missing response problems and causal inference. Ren K; Drummond CA; Brewster PS; Haller ST; Tian J; Cooper CJ; Zhang B Stat Med; 2016 Nov; 35(27):5009-5028. PubMed ID: 27417265 [TBL] [Abstract][Full Text] [Related]
8. A new Bayesian joint model for longitudinal count data with many zeros, intermittent missingness, and dropout with applications to HIV prevention trials. Wu J; Chen MH; Schifano ED; Ibrahim JG; Fisher JD Stat Med; 2019 Dec; 38(30):5565-5586. PubMed ID: 31691322 [TBL] [Abstract][Full Text] [Related]
9. Quantile Regression for Competing Risks Data with Missing Cause of Failure. Sun Y; Wang HJ; Gilbert PB Stat Sin; 2012 Apr; 22(2):703-728. PubMed ID: 23950622 [TBL] [Abstract][Full Text] [Related]
10. Longitudinal quantile regression in the presence of informative dropout through longitudinal-survival joint modeling. Farcomeni A; Viviani S Stat Med; 2015 Mar; 34(7):1199-213. PubMed ID: 25488110 [TBL] [Abstract][Full Text] [Related]
11. Robust best linear weighted estimator with missing covariates in survival analysis. Wang CY; Hsu L; Harrison T Stat Med; 2024 Apr; 43(9):1790-1803. PubMed ID: 38402690 [TBL] [Abstract][Full Text] [Related]
12. Regularized approach for data missing not at random. Tseng CH; Chen YH Stat Methods Med Res; 2019 Jan; 28(1):134-150. PubMed ID: 28671033 [TBL] [Abstract][Full Text] [Related]
13. Improved Li D; Wang L J Appl Stat; 2022; 49(11):2767-2788. PubMed ID: 35909666 [TBL] [Abstract][Full Text] [Related]
14. A General Framework for Quantile Estimation with Incomplete Data. Han P; Kong L; Zhao J; Zhou X J R Stat Soc Series B Stat Methodol; 2019 Apr; 81(2):305-333. PubMed ID: 31632183 [TBL] [Abstract][Full Text] [Related]
15. Responsiveness-informed multiple imputation and inverse probability-weighting in cohort studies with missing data that are non-monotone or not missing at random. Doidge JC Stat Methods Med Res; 2018 Feb; 27(2):352-363. PubMed ID: 26984909 [TBL] [Abstract][Full Text] [Related]
16. Best linear inverse probability weighted estimation for two-phase designs and missing covariate regression. Wang CY; Dai J Stat Med; 2019 Jul; 38(15):2783-2796. PubMed ID: 30908669 [TBL] [Abstract][Full Text] [Related]
17. Constrained empirical-likelihood confidence regions in nonignorable covariate-missing data problems. Xie Y; Zhang B Stat Med; 2019 Feb; 38(3):452-479. PubMed ID: 30311246 [TBL] [Abstract][Full Text] [Related]
18. Use of empirical likelihood to calibrate auxiliary information in partly linear monotone regression models. Chen B; Qin J Stat Med; 2014 May; 33(10):1713-22. PubMed ID: 24323567 [TBL] [Abstract][Full Text] [Related]
19. Model selection in the weighted generalized estimating equations for longitudinal data with dropout. Gosho M Biom J; 2016 May; 58(3):570-87. PubMed ID: 26509243 [TBL] [Abstract][Full Text] [Related]
20. Efficient Robust Estimation for Linear Models with Missing Response at Random. Tang ML; Tang N; Zhao P; Zhu H Scand Stat Theory Appl; 2018 Jun; 45(2):366-381. PubMed ID: 30078929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]