These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 30997802)
1. In Situ Measurements of Explosive Compound Dissolution Fluxes from Exposed Munition Material in the Baltic Sea. Beck AJ; van der Lee EM; Eggert A; Stamer B; Gledhill M; Schlosser C; Achterberg EP Environ Sci Technol; 2019 May; 53(10):5652-5660. PubMed ID: 30997802 [TBL] [Abstract][Full Text] [Related]
2. Explosives compounds from sea-dumped relic munitions accumulate in marine biota. Beck AJ; Gledhill M; Kampmeier M; Feng C; Schlosser C; Greinert J; Achterberg EP Sci Total Environ; 2022 Feb; 806(Pt 4):151266. PubMed ID: 34757098 [TBL] [Abstract][Full Text] [Related]
3. First evidence of explosives and their degradation products in dab (Limanda limanda L.) from a munition dumpsite in the Baltic Sea. Koske D; Straumer K; Goldenstein NI; Hanel R; Lang T; Kammann U Mar Pollut Bull; 2020 Jun; 155():111131. PubMed ID: 32310096 [TBL] [Abstract][Full Text] [Related]
4. Environmental Characterization of Underwater Munitions Constituents at a Former Military Training Range. Rosen G; Lotufo GR; Belden JB; George RD Environ Toxicol Chem; 2022 Feb; 41(2):275-286. PubMed ID: 33978266 [TBL] [Abstract][Full Text] [Related]
5. Dissolution of explosive compounds TNT, RDX, and HMX under continuous flow conditions. Wang C; Fuller ME; Schaefer C; Caplan JL; Jin Y J Hazard Mater; 2012 May; 217-218():187-93. PubMed ID: 22480704 [TBL] [Abstract][Full Text] [Related]
6. Release of Munitions Constituents in Aquatic Environments Under Realistic Scenarios and Validation of Polar Organic Chemical Integrative Samplers for Monitoring. Lotufo GR; George RD; Belden JB; Woodley C; Smith DL; Rosen G Environ Toxicol Chem; 2019 Nov; 38(11):2383-2391. PubMed ID: 31365142 [TBL] [Abstract][Full Text] [Related]
7. Removal rates of dissolved munitions compounds in seawater. Smith RW; Vlahos P; Tobias C; Ballentine M; Ariyarathna T; Cooper C Chemosphere; 2013 Aug; 92(8):898-904. PubMed ID: 23623038 [TBL] [Abstract][Full Text] [Related]
8. Dissolution rates of three high explosive compounds: TNT, RDX, and HMX. Lynch JC; Brannon JM; Delfino JJ Chemosphere; 2002 May; 47(7):725-34. PubMed ID: 12079068 [TBL] [Abstract][Full Text] [Related]
9. Dissolution, sorption, and kinetics involved in systems containing explosives, water, and soil. Larson SL; Martin WA; Escalon BL; Thompson M Environ Sci Technol; 2008 Feb; 42(3):786-92. PubMed ID: 18323103 [TBL] [Abstract][Full Text] [Related]
10. Dissolution kinetics of high explosives particles in a saturated sandy soil. Morley MC; Yamamoto H; Speitel GE; Clausen J J Contam Hydrol; 2006 May; 85(3-4):141-58. PubMed ID: 16530292 [TBL] [Abstract][Full Text] [Related]
11. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. Chatterjee S; Deb U; Datta S; Walther C; Gupta DK Chemosphere; 2017 Oct; 184():438-451. PubMed ID: 28618276 [TBL] [Abstract][Full Text] [Related]
12. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces. Jaramillo AM; Douglas TA; Walsh ME; Trainor TP Chemosphere; 2011 Aug; 84(8):1058-65. PubMed ID: 21601233 [TBL] [Abstract][Full Text] [Related]
13. Removal of munition constituents in stormwater runoff: Screening of native and cationized cellulosic sorbents for removal of insensitive munition constituents NTO, DNAN, and NQ, and legacy munition constituents HMX, RDX, TNT, and perchlorate. Fuller ME; Farquharson EM; Hedman PC; Chiu P J Hazard Mater; 2022 Feb; 424(Pt C):127335. PubMed ID: 34798548 [TBL] [Abstract][Full Text] [Related]
14. Biodegradation and mineralization of isotopically labeled TNT and RDX in anaerobic marine sediments. Ariyarathna T; Vlahos P; Smith RW; Fallis S; Groshens T; Tobias C Environ Toxicol Chem; 2017 May; 36(5):1170-1180. PubMed ID: 27791286 [TBL] [Abstract][Full Text] [Related]
15. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies. Ariyarathna T; Vlahos P; Tobias C; Smith R Environ Toxicol Chem; 2016 Jan; 35(1):47-55. PubMed ID: 26178383 [TBL] [Abstract][Full Text] [Related]
16. Multivariate soil fertility relationships for predicting the environmental persistence of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils. Katseanes CK; Chappell MA; Hopkins BG; Durham BD; Price CL; Porter BE; Miller LF J Environ Manage; 2017 Dec; 203(Pt 1):383-390. PubMed ID: 28818710 [TBL] [Abstract][Full Text] [Related]
17. "Don't Blast": blast-in-place (BiP) operations of dumped World War munitions in the oceans significantly increase hazards to the environment and the human seafood consumer. Maser E; Strehse JS Arch Toxicol; 2020 Jun; 94(6):1941-1953. PubMed ID: 32303806 [TBL] [Abstract][Full Text] [Related]
18. Simulated rainfall-driven dissolution of TNT, Tritonal, Comp B and Octol particles. Taylor S; Lever JH; Fadden J; Perron N; Packer B Chemosphere; 2009 May; 75(8):1074-81. PubMed ID: 19215963 [TBL] [Abstract][Full Text] [Related]
19. Desorption of nitramine and nitroaromatic explosive residues from soils detonated under controlled conditions. Douglas TA; Walsh ME; McGrath CJ; Weiss CA; Jaramillo AM; Trainor TP Environ Toxicol Chem; 2011 Feb; 30(2):345-53. PubMed ID: 21038362 [TBL] [Abstract][Full Text] [Related]
20. Non-aerosol detection of explosives with a continuous flow immunosensor. Shriver-Lake LC; Charles PT; Kusterbeck AW Anal Bioanal Chem; 2003 Oct; 377(3):550-5. PubMed ID: 12920500 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]