These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 30998484)
1. Leveraging a Big Dataset to Develop a Recurrent Neural Network to Predict Adverse Glycemic Events in Type 1 Diabetes. Mosquera-Lopez C; Dodier R; Tyler N; Resalat N; Jacobs P IEEE J Biomed Health Inform; 2019 Apr; ():. PubMed ID: 30998484 [TBL] [Abstract][Full Text] [Related]
2. The effectiveness of continuous subcutaneous insulin pumps with continuous glucose monitoring in outpatient adolescents with type 1 diabetes: A systematic review. Matsuda E; Brennan P JBI Libr Syst Rev; 2012; 10(42 Suppl):1-10. PubMed ID: 27820140 [TBL] [Abstract][Full Text] [Related]
3. Incorporating Glucose Variability into Glucose Forecasting Accuracy Assessment Using the New Glucose Variability Impact Index and the Prediction Consistency Index: An LSTM Case Example. Mosquera-Lopez C; Jacobs PG J Diabetes Sci Technol; 2022 Jan; 16(1):7-18. PubMed ID: 34490793 [TBL] [Abstract][Full Text] [Related]
4. Development of a neural network for prediction of glucose concentration in type 1 diabetes patients. Pappada SM; Cameron BD; Rosman PM J Diabetes Sci Technol; 2008 Sep; 2(5):792-801. PubMed ID: 19885262 [TBL] [Abstract][Full Text] [Related]
5. Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction. Rabby MF; Tu Y; Hossen MI; Lee I; Maida AS; Hei X BMC Med Inform Decis Mak; 2021 Mar; 21(1):101. PubMed ID: 33726723 [TBL] [Abstract][Full Text] [Related]
6. Generalization of a Deep Learning Model for Continuous Glucose Monitoring-Based Hypoglycemia Prediction: Algorithm Development and Validation Study. Shao J; Pan Y; Kou WB; Feng H; Zhao Y; Zhou K; Zhong S JMIR Med Inform; 2024 May; 12():e56909. PubMed ID: 38801705 [TBL] [Abstract][Full Text] [Related]
7. Reliability of Inpatient CGM: Comparison to Standard of Care. Price C; Ditton G; Russell GB; Aloi J J Diabetes Sci Technol; 2023 Mar; 17(2):329-335. PubMed ID: 34911384 [TBL] [Abstract][Full Text] [Related]
8. Forecasting of Glucose Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven Algorithms Based on Continuous Glucose Monitoring Data Only. Prendin F; Del Favero S; Vettoretti M; Sparacino G; Facchinetti A Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33673415 [TBL] [Abstract][Full Text] [Related]
9. Glycemic Outcomes and Feature Set Engagement Among Real-Time Continuous Glucose Monitoring Users With Type 1 or Non-Insulin-Treated Type 2 Diabetes: Retrospective Analysis of Real-World Data. Dowd R; Jepson LH; Green CR; Norman GJ; Thomas R; Leone K JMIR Diabetes; 2023 Jan; 8():e43991. PubMed ID: 36602920 [TBL] [Abstract][Full Text] [Related]
10. Forecasting glucose values for patients with type 1 diabetes using heart rate data. Giancotti R; Bosoni P; Vizza P; Tradigo G; Gnasso A; Guzzi PH; Bellazzi R; Irace C; Veltri P Comput Methods Programs Biomed; 2024 Dec; 257():108438. PubMed ID: 39332152 [TBL] [Abstract][Full Text] [Related]
12. Rate of Change of Premeal Glucose Measured by Continuous Glucose Monitoring Predicts Postmeal Glycemic Excursions in Patients With Type 1 Diabetes: Implications for Therapy. Majithia AR; Wiltschko AB; Zheng H; Walford GA; Nathan DM J Diabetes Sci Technol; 2018 Jan; 12(1):76-82. PubMed ID: 28868899 [TBL] [Abstract][Full Text] [Related]
13. How Much Is Short-Term Glucose Prediction in Type 1 Diabetes Improved by Adding Insulin Delivery and Meal Content Information to CGM Data? A Proof-of-Concept Study. Zecchin C; Facchinetti A; Sparacino G; Cobelli C J Diabetes Sci Technol; 2016 Sep; 10(5):1149-60. PubMed ID: 27381030 [TBL] [Abstract][Full Text] [Related]
14. Multi-Hour Blood Glucose Prediction in Type 1 Diabetes: A Patient-Specific Approach Using Shallow Neural Network Models. Kushner T; Breton MD; Sankaranarayanan S Diabetes Technol Ther; 2020 Dec; 22(12):883-891. PubMed ID: 32324062 [No Abstract] [Full Text] [Related]
15. Titration of Long-Acting Insulin Using Continuous Glucose Monitoring and Smart Insulin Pens in Type 1 Diabetes: A Model-Based Carbohydrate-Free Approach. El Fathi A; Fabris C; Breton MD Front Endocrinol (Lausanne); 2021; 12():795895. PubMed ID: 35082757 [TBL] [Abstract][Full Text] [Related]
16. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
18. Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal. Liu C; Vehí J; Avari P; Reddy M; Oliver N; Georgiou P; Herrero P Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597288 [TBL] [Abstract][Full Text] [Related]
19. Diabetes technology and treatments in the paediatric age group. Shalitin S; Peter Chase H Int J Clin Pract Suppl; 2011 Feb; (170):76-82. PubMed ID: 21323816 [TBL] [Abstract][Full Text] [Related]
20. Effect of Continuous Glucose Monitoring on Hypoglycemia in Older Adults With Type 1 Diabetes: A Randomized Clinical Trial. Pratley RE; Kanapka LG; Rickels MR; Ahmann A; Aleppo G; Beck R; Bhargava A; Bode BW; Carlson A; Chaytor NS; Fox DS; Goland R; Hirsch IB; Kruger D; Kudva YC; Levy C; McGill JB; Peters A; Philipson L; Philis-Tsimikas A; Pop-Busui R; Shah VN; Thompson M; Vendrame F; Verdejo A; Weinstock RS; Young L; Miller KM; JAMA; 2020 Jun; 323(23):2397-2406. PubMed ID: 32543682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]