These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 30998674)

  • 1. Toward a 3D model of phyllotaxis based on a biochemically plausible auxin-transport mechanism.
    Hartmann FP; Barbier de Reuille P; Kuhlemeier C
    PLoS Comput Biol; 2019 Apr; 15(4):e1006896. PubMed ID: 30998674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of phyllotaxis by polar auxin transport.
    Reinhardt D; Pesce ER; Stieger P; Mandel T; Baltensperger K; Bennett M; Traas J; Friml J; Kuhlemeier C
    Nature; 2003 Nov; 426(6964):255-60. PubMed ID: 14628043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between meristem tissue layers controls phyllotaxis.
    Kierzkowski D; Lenhard M; Smith R; Kuhlemeier C
    Dev Cell; 2013 Sep; 26(6):616-28. PubMed ID: 24091013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MAB4-induced auxin sink generates local auxin gradients in Arabidopsis organ formation.
    Furutani M; Nakano Y; Tasaka M
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):1198-203. PubMed ID: 24395791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auxin and self-organization at the shoot apical meristem.
    Sassi M; Vernoux T
    J Exp Bot; 2013 Jun; 64(9):2579-92. PubMed ID: 23585672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxin regulates the initiation and radial position of plant lateral organs.
    Reinhardt D; Mandel T; Kuhlemeier C
    Plant Cell; 2000 Apr; 12(4):507-18. PubMed ID: 10760240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of transport-based models for phyllotaxis and midvein formation.
    Bayer EM; Smith RS; Mandel T; Nakayama N; Sauer M; Prusinkiewicz P; Kuhlemeier C
    Genes Dev; 2009 Feb; 23(3):373-84. PubMed ID: 19204121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontogenetic Changes in Auxin Biosynthesis and Distribution Determine the Organogenic Activity of the Shoot Apical Meristem in
    Banasiak A; Biedroń M; Dolzblasz A; Berezowski MA
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30621327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial regularity control of phyllotaxis pattern generated by the mutual interaction between auxin and PIN1.
    Fujita H; Kawaguchi M
    PLoS Comput Biol; 2018 Apr; 14(4):e1006065. PubMed ID: 29614066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1.
    van Rongen M; Bennett T; Ticchiarelli F; Leyser O
    PLoS Genet; 2019 Mar; 15(3):e1008023. PubMed ID: 30865619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An auxin-driven polarized transport model for phyllotaxis.
    Jönsson H; Heisler MG; Shapiro BE; Meyerowitz EM; Mjolsness E
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1633-8. PubMed ID: 16415160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development.
    Stoma S; Lucas M; Chopard J; Schaedel M; Traas J; Godin C
    PLoS Comput Biol; 2008 Oct; 4(10):e1000207. PubMed ID: 18974825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auxin-driven patterning with unidirectional fluxes.
    Cieslak M; Runions A; Prusinkiewicz P
    J Exp Bot; 2015 Aug; 66(16):5083-102. PubMed ID: 26116915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of organ patterning on the floral meristem using a polar auxin transport model.
    van Mourik S; Kaufmann K; van Dijk AD; Angenent GC; Merks RM; Molenaar J
    PLoS One; 2012; 7(1):e28762. PubMed ID: 22291882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auxin Acts through MONOPTEROS to Regulate Plant Cell Polarity and Pattern Phyllotaxis.
    Bhatia N; Bozorg B; Larsson A; Ohno C; Jönsson H; Heisler MG
    Curr Biol; 2016 Dec; 26(23):3202-3208. PubMed ID: 27818174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of polarity convergences underlying shoot outgrowths.
    Abley K; Sauret-Güeto S; Marée AF; Coen E
    Elife; 2016 Aug; 5():. PubMed ID: 27478985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vein patterning by tissue-specific auxin transport.
    Govindaraju P; Verna C; Zhu T; Scarpella E
    Development; 2020 Jul; 147(13):. PubMed ID: 32493758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport.
    Heisler MG; Hamant O; Krupinski P; Uyttewaal M; Ohno C; Jönsson H; Traas J; Meyerowitz EM
    PLoS Biol; 2010 Oct; 8(10):e1000516. PubMed ID: 20976043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined in silico/in vivo analysis of mechanisms providing for root apical meristem self-organization and maintenance.
    Mironova VV; Omelyanchuk NA; Novoselova ES; Doroshkov AV; Kazantsev FV; Kochetov AV; Kolchanov NA; Mjolsness E; Likhoshvai VA
    Ann Bot; 2012 Jul; 110(2):349-60. PubMed ID: 22510326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux.
    Friml J; Yang X; Michniewicz M; Weijers D; Quint A; Tietz O; Benjamins R; Ouwerkerk PB; Ljung K; Sandberg G; Hooykaas PJ; Palme K; Offringa R
    Science; 2004 Oct; 306(5697):862-5. PubMed ID: 15514156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.