BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 30998770)

  • 1. Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields.
    Ma X; Deng X; Qi L; Jiang Y; Li H; Wang Y; Xing X
    PLoS One; 2019; 14(4):e0215676. PubMed ID: 30998770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weed target detection at seedling stage in paddy fields based on YOLOX.
    Deng X; Qi L; Liu Z; Liang S; Gong K; Qiu G
    PLoS One; 2023; 18(12):e0294709. PubMed ID: 38091355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Weakly Supervised Semantic Segmentation Model of Maize Seedlings and Weed Images Based on Scrawl Labels.
    Zhao L; Zhao Y; Liu T; Deng H
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weed and Corn Seedling Detection in Field Based on Multi Feature Fusion and Support Vector Machine.
    Chen Y; Wu Z; Zhao B; Fan C; Shi S
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks.
    Al-Masni MA; Al-Antari MA; Choi MT; Han SM; Kim TS
    Comput Methods Programs Biomed; 2018 Aug; 162():221-231. PubMed ID: 29903489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of periphyton on seed germination and seedling growth of rice (Oryza sativa) in paddy area.
    Lu H; Liu J; Kerr PG; Shao H; Wu Y
    Sci Total Environ; 2017 Feb; 578():74-80. PubMed ID: 27503628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of different deep convolutional neural networks for detection of broadleaf weed seedlings in wheat.
    Zhuang J; Li X; Bagavathiannan M; Jin X; Yang J; Meng W; Li T; Li L; Wang Y; Chen Y; Yu J
    Pest Manag Sci; 2022 Feb; 78(2):521-529. PubMed ID: 34561954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Deep Neural Networks for Semantic Segmentation of Prostate in T2W MRI.
    Khan Z; Yahya N; Alsaih K; Ali SSA; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced photosynthesis endows seedling growth vigour contributing to the competitive dominance of weedy rice over cultivated rice.
    Dai L; Song X; He B; Valverde BE; Qiang S
    Pest Manag Sci; 2017 Jul; 73(7):1410-1420. PubMed ID: 27790812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving U-net network for semantic segmentation of corns and weeds during corn seedling stage in field.
    Cui J; Tan F; Bai N; Fu Y
    Front Plant Sci; 2024; 15():1344958. PubMed ID: 38405583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton.
    Sapkota BB; Popescu S; Rajan N; Leon RG; Reberg-Horton C; Mirsky S; Bagavathiannan MV
    Sci Rep; 2022 Nov; 12(1):19580. PubMed ID: 36379963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of different rice farming systems on paddy field weed community].
    Zhang D; Min QW; Cheng SK; Yang HL; He L; Jiao WJ; Liu S
    Ying Yong Sheng Tai Xue Bao; 2010 Jun; 21(6):1603-8. PubMed ID: 20873641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WRA-Net: Wide Receptive Field Attention Network for Motion Deblurring in Crop and Weed Image.
    Yun C; Kim YH; Lee SJ; Im SJ; Park KR
    Plant Phenomics; 2023; 5():0031. PubMed ID: 37287583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of weed control efficacy and crop safety of the new HPPD-inhibiting herbicide-QYR301.
    Wang H; Liu W; Zhao K; Yu H; Zhang J; Wang J
    Sci Rep; 2018 May; 8(1):7910. PubMed ID: 29785001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.
    Huang H; Deng J; Lan Y; Yang A; Deng X; Zhang L
    PLoS One; 2018; 13(4):e0196302. PubMed ID: 29698500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model.
    Hu Y; Guo Y; Wang Y; Yu J; Li J; Zhou S; Chang C
    Med Phys; 2019 Jan; 46(1):215-228. PubMed ID: 30374980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rice allelopathy in weed management - An integrated approach.
    Patni B; Chandra H; Mishra AP; Guru SK; Vitalini S; Iriti M
    Cell Mol Biol (Noisy-le-grand); 2018 Jun; 64(8):84-93. PubMed ID: 29981689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An application of cascaded 3D fully convolutional networks for medical image segmentation.
    Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K
    Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the interaction among rice, weeds, inorganic fertilizer, and a herbivore in a composite farming paddy ecosystem.
    Wu Z; Wang Y; Zhou X; Zhou T
    Math Biosci; 2018 Jun; 300():145-156. PubMed ID: 29605657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images.
    Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J
    Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.