These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 30998788)
21. Mammalian hibernation as a model of disuse osteoporosis: the effects of physical inactivity on bone metabolism, structure, and strength. McGee-Lawrence ME; Carey HV; Donahue SW Am J Physiol Regul Integr Comp Physiol; 2008 Dec; 295(6):R1999-2014. PubMed ID: 18843088 [TBL] [Abstract][Full Text] [Related]
22. Changes in expression of hepatic genes involved in energy metabolism during hibernation in captive, adult, female Japanese black bears (Ursus thibetanus japonicus). Shimozuru M; Kamine A; Tsubota T Comp Biochem Physiol B Biochem Mol Biol; 2012 Oct; 163(2):254-61. PubMed ID: 22771378 [TBL] [Abstract][Full Text] [Related]
24. Increased cardiac alpha-myosin heavy chain in left atria and decreased myocardial insulin-like growth factor (Igf-I) expression accompany low heart rate in hibernating grizzly bears. Barrows ND; Nelson OL; Robbins CT; Rourke BC Physiol Biochem Zool; 2011; 84(1):1-17. PubMed ID: 21117961 [TBL] [Abstract][Full Text] [Related]
25. Preservation of bone mass and structure in hibernating black bears (Ursus americanus) through elevated expression of anabolic genes. Fedorov VB; Goropashnaya AV; Tøien Ø; Stewart NC; Chang C; Wang H; Yan J; Showe LC; Showe MK; Donahue SW; Barnes BM Funct Integr Genomics; 2012 Jun; 12(2):357-65. PubMed ID: 22351243 [TBL] [Abstract][Full Text] [Related]
26. Elevated expression of protein biosynthesis genes in liver and muscle of hibernating black bears (Ursus americanus). Fedorov VB; Goropashnaya AV; Tøien Ø; Stewart NC; Gracey AY; Chang C; Qin S; Pertea G; Quackenbush J; Showe LC; Showe MK; Boyer BB; Barnes BM Physiol Genomics; 2009 Apr; 37(2):108-18. PubMed ID: 19240299 [TBL] [Abstract][Full Text] [Related]
27. Concurrent BMP Signaling Maintenance and TGF-β Signaling Inhibition Is a Hallmark of Natural Resistance to Muscle Atrophy in the Hibernating Bear. Cussonneau L; Boyer C; Brun C; Deval C; Loizon E; Meugnier E; Gueret E; Dubois E; Taillandier D; Polge C; Béchet D; Gauquelin-Koch G; Evans AL; Arnemo JM; Swenson JE; Blanc S; Simon C; Lefai E; Bertile F; Combaret L Cells; 2021 Jul; 10(8):. PubMed ID: 34440643 [TBL] [Abstract][Full Text] [Related]
28. Metabolic reprogramming involving glycolysis in the hibernating brown bear skeletal muscle. Chazarin B; Storey KB; Ziemianin A; Chanon S; Plumel M; Chery I; Durand C; Evans AL; Arnemo JM; Zedrosser A; Swenson JE; Gauquelin-Koch G; Simon C; Blanc S; Lefai E; Bertile F Front Zool; 2019; 16():12. PubMed ID: 31080489 [TBL] [Abstract][Full Text] [Related]
29. Skeletal muscle mass and composition during mammalian hibernation. Cotton CJ J Exp Biol; 2016 Jan; 219(Pt 2):226-34. PubMed ID: 26792334 [TBL] [Abstract][Full Text] [Related]
30. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation. McGee-Lawrence M; Buckendahl P; Carpenter C; Henriksen K; Vaughan M; Donahue S J Exp Biol; 2015 Jul; 218(Pt 13):2067-74. PubMed ID: 26157160 [TBL] [Abstract][Full Text] [Related]
31. Transcriptional changes in muscle of hibernating arctic ground squirrels (Urocitellus parryii): implications for attenuation of disuse muscle atrophy. Goropashnaya AV; Barnes BM; Fedorov VB Sci Rep; 2020 Jun; 10(1):9010. PubMed ID: 32488149 [TBL] [Abstract][Full Text] [Related]
32. Of bears, frogs, meat, mice and men: complexity of factors affecting skeletal muscle mass and fat. Shavlakadze T; Grounds M Bioessays; 2006 Oct; 28(10):994-1009. PubMed ID: 16998828 [TBL] [Abstract][Full Text] [Related]
33. Bone adaptation and osteoporosis prevention in hibernating mammals. Donahue SW Comp Biochem Physiol A Mol Integr Physiol; 2023 Jun; 280():111411. PubMed ID: 36871815 [TBL] [Abstract][Full Text] [Related]
34. Metabolic changes in summer active and anuric hibernating free-ranging brown bears (Ursus arctos). Stenvinkel P; Fröbert O; Anderstam B; Palm F; Eriksson M; Bragfors-Helin AC; Qureshi AR; Larsson T; Friebe A; Zedrosser A; Josefsson J; Svensson M; Sahdo B; Bankir L; Johnson RJ PLoS One; 2013; 8(9):e72934. PubMed ID: 24039826 [TBL] [Abstract][Full Text] [Related]
35. Polar bears (Ursus maritimus), the most evolutionary advanced hibernators, avoid significant bone loss during hibernation. Lennox AR; Goodship AE Comp Biochem Physiol A Mol Integr Physiol; 2008 Feb; 149(2):203-8. PubMed ID: 18249018 [TBL] [Abstract][Full Text] [Related]
36. Black bears with longer disuse (hibernation) periods have lower femoral osteon population density and greater mineralization and intracortical porosity. Wojda SJ; Weyland DR; Gray SK; McGee-Lawrence ME; Drummer TD; Donahue SW Anat Rec (Hoboken); 2013 Aug; 296(8):1148-53. PubMed ID: 23728917 [TBL] [Abstract][Full Text] [Related]
38. Thermoregulation and energetics in hibernating black bears: metabolic rate and the mystery of multi-day body temperature cycles. Tøien Ø; Blake J; Barnes BM J Comp Physiol B; 2015 May; 185(4):447-61. PubMed ID: 25648622 [TBL] [Abstract][Full Text] [Related]