These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30999128)

  • 1. Bone char as a green sorbent for removing health threatening fluoride from drinking water.
    Alkurdi SSA; Al-Juboori RA; Bundschuh J; Hamawand I
    Environ Int; 2019 Jun; 127():704-719. PubMed ID: 30999128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies.
    Nigri EM; Cechinel MA; Mayer DA; Mazur LP; Loureiro JM; Rocha SD; Vilar VJ
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2364-2380. PubMed ID: 27815851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of fluoride ion by bone char produced from animal biomass.
    Kawasaki N; Ogata F; Tominaga H; Yamaguchi I
    J Oleo Sci; 2009; 58(10):529-35. PubMed ID: 19745580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of regenerated bone char for fluoride removal in drinking water: a case study in Tanzania.
    Kaseva ME
    J Water Health; 2006 Mar; 4(1):139-47. PubMed ID: 16604845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluoride sorption characteristics of different grades of bone charcoal, based on batch tests.
    Mwaniki DL
    J Dent Res; 1992 Jun; 71(6):1310-5. PubMed ID: 1613181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defluoridation of water at high pH with use of brushite, calcium hydroxide, and bone char.
    Larsen MJ; Pearce EI; Jensen SJ
    J Dent Res; 1993 Nov; 72(11):1519-25. PubMed ID: 8227703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorbent synthesis of polypyrrole/TiO(2) for effective fluoride removal from aqueous solution for drinking water purification: Adsorbent characterization and adsorption mechanism.
    Chen J; Shu C; Wang N; Feng J; Ma H; Yan W
    J Colloid Interface Sci; 2017 Jun; 495():44-52. PubMed ID: 28189108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crustacean derived calcium phosphate systems: Application in defluoridation of drinking water in East African rift valley.
    Wagutu AW; Machunda R; Jande YAC
    J Hazard Mater; 2018 Apr; 347():95-105. PubMed ID: 29294411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone char with antibacterial properties for fluoride removal: Preparation, characterization and water treatment.
    Delgadillo-Velasco L; Hernández-Montoya V; Cervantes FJ; Montes-Morán MA; Lira-Berlanga D
    J Environ Manage; 2017 Oct; 201():277-285. PubMed ID: 28675862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manganese-oxide-coated alumina: a promising sorbent for defluoridation of water.
    Maliyekkal SM; Sharma AK; Philip L
    Water Res; 2006 Nov; 40(19):3497-506. PubMed ID: 17011020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of fluoride ions onto carbonaceous materials.
    Abe I; Iwasaki S; Tokimoto T; Kawasaki N; Nakamura T; Tanada S
    J Colloid Interface Sci; 2004 Jul; 275(1):35-9. PubMed ID: 15158376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption kinetics of fluoride in drinking water by bone charcoal columns.
    Mwaniki D; Nagelkerke N
    Front Med Biol Eng; 1990; 2(4):303-8. PubMed ID: 2081153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effectiveness of bone char in the defluoridation of water in relation to its crystallinity, carbon content and dissolution pattern.
    Larsen MJ; Pearce EI; Ravnholt G
    Arch Oral Biol; 1994 Sep; 39(9):807-16. PubMed ID: 7802616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Fluoride Adsorption Mechanism and Capacity of Different Types of Bone Char.
    Sawangjang B; Induvesa P; Wongrueng A; Pumas C; Wattanachira S; Rakruam P; Punyapalakul P; Takizawa S; Khan E
    Int J Environ Res Public Health; 2021 Jun; 18(13):. PubMed ID: 34206972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The batch study of Sr(2+) sorption by bone char.
    Smiciklas I; Dimovic S; Sljivic M; Plecas I
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Feb; 43(2):210-7. PubMed ID: 18172814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal.
    Alkurdi SSA; Al-Juboori RA; Bundschuh J; Bowtell L; McKnight S
    Environ Pollut; 2020 Jul; 262():114221. PubMed ID: 32120255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of lanthanum impregnated cellulose, derived from biomass, as an adsorbent for the removal of fluoride from drinking water.
    Nagaraj A; Sadasivuni KK; Rajan M
    Carbohydr Polym; 2017 Nov; 176():402-410. PubMed ID: 28927624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9.
    Onyango MS; Kojima Y; Aoyi O; Bernardo EC; Matsuda H
    J Colloid Interface Sci; 2004 Nov; 279(2):341-50. PubMed ID: 15464797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homemade bone charcoal adsorbent for defluoridation of groundwater in Thailand.
    Smittakorn S; Jirawongboonrod N; Mongkolnchai-arunya S; Durnford D
    J Water Health; 2010 Dec; 8(4):826-36. PubMed ID: 20705992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research?
    Alkurdi SSA; Herath I; Bundschuh J; Al-Juboori RA; Vithanage M; Mohan D
    Environ Int; 2019 Jun; 127():52-69. PubMed ID: 30909094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.