BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30999285)

  • 1. Physics-based spectral compensation algorithm for x-ray CT with primary modulator.
    Gao H; Zhang L; Grimmer R; Fahrig R
    Phys Med Biol; 2019 Jun; 64(12):125006. PubMed ID: 30999285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual scatter modulation for X-ray CT scatter correction using primary modulator.
    Gao H; Zhu L; Fahrig R
    J Xray Sci Technol; 2017; 25(6):869-885. PubMed ID: 28582954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-energy blended CBCT spectral imaging and scatter-decoupled material decomposition using a spectral modulator with flying focal spot (SMFFS).
    Deng Y; Zhou H; Wang Z; Wang AS; Gao H
    Med Phys; 2024 Apr; 51(4):2398-2412. PubMed ID: 38477717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Densely sampled spectral modulation for x-ray CT using a stationary modulator with flying focal spot: a conceptual and feasibility study of scatter and spectral correction.
    Gao H; Zhang T; Bennett NR; Wang AS
    Med Phys; 2021 Apr; 48(4):1557-1570. PubMed ID: 33420741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local filtration based scatter correction for cone-beam CT using primary modulation.
    Zhu L
    Med Phys; 2016 Nov; 43(11):6199. PubMed ID: 27806607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-energy head cone-beam CT using a dual-layer flat-panel detector: Hybrid material decomposition and a feasibility study.
    Wang Z; Zhou H; Gu S; Xia Y; Liao H; Deng Y; Gao H
    Med Phys; 2023 Nov; 50(11):6762-6778. PubMed ID: 37675888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scatter correction for full-fan volumetric CT using a stationary beam blocker in a single full scan.
    Niu T; Zhu L
    Med Phys; 2011 Nov; 38(11):6027-38. PubMed ID: 22047367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analysis of scatter characteristics in x-ray CT spectral correction.
    Zhang T; Chen Z; Zhou H; Bennett NR; Wang AS; Gao H
    Phys Med Biol; 2021 Mar; 66(7):. PubMed ID: 33657536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model-based scatter artifacts correction for cone beam CT.
    Zhao W; Vernekohl D; Zhu J; Wang L; Xing L
    Med Phys; 2016 Apr; 43(4):1736. PubMed ID: 27036571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shading correction for on-board cone-beam CT in radiation therapy using planning MDCT images.
    Niu T; Sun M; Star-Lack J; Gao H; Fan Q; Zhu L
    Med Phys; 2010 Oct; 37(10):5395-406. PubMed ID: 21089775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shading correction assisted iterative cone-beam CT reconstruction.
    Yang C; Wu P; Gong S; Wang J; Lyu Q; Tang X; Niu T
    Phys Med Biol; 2017 Oct; 62(22):8495-8520. PubMed ID: 29077573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-scan patient-specific scatter correction in computed tomography using peripheral detection of scatter and compressed sensing scatter retrieval.
    Meng B; Lee H; Xing L; Fahimian BP
    Med Phys; 2013 Jan; 40(1):011907. PubMed ID: 23298098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A generalized image quality improvement strategy of cone-beam CT using multiple spectral CT labels in Pix2pix GAN.
    Jiang Y; Zhang Y; Luo C; Yang P; Wang J; Liang X; Zhao W; Li R; Niu T
    Phys Med Biol; 2022 May; 67(11):. PubMed ID: 35487206
    [No Abstract]   [Full Text] [Related]  

  • 14. Binary moving-blocker-based scatter correction in cone-beam computed tomography with width-truncated projections: proof of concept.
    Lee H; Fahimian BP; Xing L
    Phys Med Biol; 2017 Mar; 62(6):2176-2193. PubMed ID: 28079527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical and robust method for beam blocker-based cone beam CT scatter correction.
    Cui H; Jiang X; Tang W; Lu HM; Yang Y
    Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36634362
    [No Abstract]   [Full Text] [Related]  

  • 16. Relationship between x-ray illumination field size and flat field intensity and its impacts on x-ray imaging.
    Dong X; Niu T; Jia X; Zhu L
    Med Phys; 2012 Oct; 39(10):5901-9. PubMed ID: 23039629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid.
    Stankovic U; van Herk M; Ploeger LS; Sonke JJ
    Med Phys; 2014 Jun; 41(6):061910. PubMed ID: 24877821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Addressing CT metal artifacts using photon-counting detectors and one-step spectral CT image reconstruction.
    Schmidt TG; Sammut BA; Barber RF; Pan X; Sidky EY
    Med Phys; 2022 May; 49(5):3021-3040. PubMed ID: 35318699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scatter correction method for x-ray CT using primary modulation: phantom studies.
    Gao H; Fahrig R; Bennett NR; Sun M; Star-Lack J; Zhu L
    Med Phys; 2010 Feb; 37(2):934-46. PubMed ID: 20229902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical beam hardening and ring artifact correction for x-ray grating interferometry (EBHC-GI).
    Nelson BJ; Leng S; Shanblatt ER; McCollough CH; Koenig T
    Med Phys; 2021 Mar; 48(3):1327-1340. PubMed ID: 33338261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.