BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 30999287)

  • 21. A streak artifact reduction algorithm in sparse-view CT using a self-supervised neural representation.
    Kim B; Shim H; Baek J
    Med Phys; 2022 Dec; 49(12):7497-7515. PubMed ID: 35880806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Projection-to-image transform frame: a lightweight block reconstruction network for computed tomography.
    Ma G; Zhao X; Zhu Y; Zhang H
    Phys Med Biol; 2022 Feb; 67(3):. PubMed ID: 34879357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparative study based on image quality and clinical task performance for CT reconstruction algorithms in radiotherapy.
    Li H; Dolly S; Chen HC; Anastasio MA; Low DA; Li HH; Michalski JM; Thorstad WL; Gay H; Mutic S
    J Appl Clin Med Phys; 2016 Jul; 17(4):377-390. PubMed ID: 27455472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. X-ray Cherenkov-luminescence tomography reconstruction with a three-component deep learning algorithm: Swin transformer, convolutional neural network, and locality module.
    Feng J; Zhang H; Geng M; Chen H; Jia K; Sun Z; Li Z; Cao X; Pogue BW
    J Biomed Opt; 2023 Feb; 28(2):026004. PubMed ID: 36818584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous deblurring and iterative reconstruction of CBCT for image guided brain radiosurgery.
    Hashemi S; Song WY; Sahgal A; Lee Y; Huynh C; Grouza V; Nordström H; Eriksson M; Dorenlot A; Régis JM; Mainprize JG; Ruschin M
    Phys Med Biol; 2017 Apr; 62(7):2521-2541. PubMed ID: 28248652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A three-dimensional weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT under a circular source trajectory.
    Tang X; Hsieh J; Hagiwara A; Nilsen RA; Thibault JB; Drapkin E
    Phys Med Biol; 2005 Aug; 50(16):3889-905. PubMed ID: 16077234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exterior computed tomography image reconstruction based on anisotropic relative total variation in polar coordinates.
    Shen Z; Zeng L; Gong C; Guo Y; He Y; Yang Z
    J Xray Sci Technol; 2022; 30(2):343-364. PubMed ID: 35095013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Image reconstruction method for limited-angle CT based on total variation minimization using guided image filtering.
    Wang J; Yue Y; Wang C; Yu W
    Med Biol Eng Comput; 2022 Jul; 60(7):2109-2118. PubMed ID: 35596032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Back-propagation neural network-based reconstruction algorithm for diffuse optical tomography.
    Feng J; Sun Q; Li Z; Sun Z; Jia K
    J Biomed Opt; 2018 Dec; 24(5):1-12. PubMed ID: 30569669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction.
    Hu D; Zhang Y; Liu J; Luo S; Chen Y
    IEEE Trans Med Imaging; 2022 Jul; 41(7):1778-1790. PubMed ID: 35100109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a denoising convolutional neural network-based algorithm for metal artifact reduction in digital tomosynthesis for arthroplasty: A phantom study.
    Gomi T; Sakai R; Hara H; Watanabe Y; Mizukami S
    PLoS One; 2019; 14(9):e0222406. PubMed ID: 31518374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining convolutional sparse coding with total variation for sparse-view CT reconstruction.
    Li X; Li Y; Chen P; Li F
    Appl Opt; 2022 Feb; 61(6):C116-C124. PubMed ID: 35201005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AirNet: Fused analytical and iterative reconstruction with deep neural network regularization for sparse-data CT.
    Chen G; Hong X; Ding Q; Zhang Y; Chen H; Fu S; Zhao Y; Zhang X; Ji H; Wang G; Huang Q; Gao H
    Med Phys; 2020 Jul; 47(7):2916-2930. PubMed ID: 32274793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interior tomography in microscopic CT with image reconstruction constrained by full field of view scan at low spatial resolution.
    Luo S; Shen T; Sun Y; Li J; Li G; Tang X
    Phys Med Biol; 2018 Mar; 63(7):075006. PubMed ID: 29509149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new approach for reducing beam hardening artifacts in polychromatic X-ray computed tomography using more accurate prior image.
    Wang H; Xu Y; Shi H
    J Xray Sci Technol; 2018; 26(4):593-602. PubMed ID: 29562575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sparsity-induced dynamic guided filtering approach for sparse-view data toward low-dose x-ray computed tomography.
    Yu W; Wang C; Nie X; Zeng D
    Phys Med Biol; 2018 Nov; 63(23):235016. PubMed ID: 30484434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Incident Photon Number and Reconstructed Linear Attenuation Coefficients in Iterative CT Image Reconstruction].
    Shinohara H; Hashimoto T
    Igaku Butsuri; 2019; 38(4):143-158. PubMed ID: 30828046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Block matching sparsity regularization-based image reconstruction for incomplete projection data in computed tomography.
    Cai A; Li L; Zheng Z; Zhang H; Wang L; Hu G; Yan B
    Phys Med Biol; 2018 Feb; 63(3):035045. PubMed ID: 29188791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient and robust 3D CT image reconstruction based on total generalized variation regularization using the alternating direction method.
    Chen J; Wang L; Yan B; Zhang H; Cheng G
    J Xray Sci Technol; 2015; 23(6):683-99. PubMed ID: 26756406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new metal artifact reduction algorithm based on a deteriorated CT image.
    Kano T; Koseki M
    J Xray Sci Technol; 2016 Nov; 24(6):901-912. PubMed ID: 27612053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.