These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. When fast and slow interfaces grow together: Connection to the half-space problem of the Kardar-Parisi-Zhang class. Ito Y; Takeuchi KA Phys Rev E; 2018 Apr; 97(4-1):040103. PubMed ID: 29758753 [TBL] [Abstract][Full Text] [Related]
8. One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality. Sasamoto T; Spohn H Phys Rev Lett; 2010 Jun; 104(23):230602. PubMed ID: 20867222 [TBL] [Abstract][Full Text] [Related]
9. Diffusion in time-dependent random media and the Kardar-Parisi-Zhang equation. Le Doussal P; Thiery T Phys Rev E; 2017 Jul; 96(1-1):010102. PubMed ID: 29347226 [TBL] [Abstract][Full Text] [Related]
10. Universal fluctuations in Kardar-Parisi-Zhang growth on one-dimensional flat substrates. Oliveira TJ; Ferreira SC; Alves SG Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010601. PubMed ID: 22400503 [TBL] [Abstract][Full Text] [Related]
11. Width and extremal height distributions of fluctuating interfaces with window boundary conditions. Carrasco IS; Oliveira TJ Phys Rev E; 2016 Jan; 93(1):012801. PubMed ID: 26871135 [TBL] [Abstract][Full Text] [Related]
12. Height distribution of the Kardar-Parisi-Zhang equation with sharp-wedge initial condition: numerical evaluations. Prolhac S; Spohn H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011119. PubMed ID: 21867125 [TBL] [Abstract][Full Text] [Related]
13. Large Deviations of Surface Height in the Kardar-Parisi-Zhang Equation. Meerson B; Katzav E; Vilenkin A Phys Rev Lett; 2016 Feb; 116(7):070601. PubMed ID: 26943523 [TBL] [Abstract][Full Text] [Related]
15. Mutually avoiding paths in random media and largest eigenvalues of random matrices. De Luca A; Le Doussal P Phys Rev E; 2017 Mar; 95(3-1):030103. PubMed ID: 28415280 [TBL] [Abstract][Full Text] [Related]
16. Universality and dependence on initial conditions in the class of the nonlinear molecular beam epitaxy equation. Carrasco IS; Oliveira TJ Phys Rev E; 2016 Nov; 94(5-1):050801. PubMed ID: 27967078 [TBL] [Abstract][Full Text] [Related]
17. Height distributions in interface growth: The role of the averaging process. Oliveira TJ Phys Rev E; 2022 Jun; 105(6-1):064803. PubMed ID: 35854512 [TBL] [Abstract][Full Text] [Related]
18. Non-KPZ fluctuations in the derivative of the Kardar-Parisi-Zhang equation or noisy Burgers equation. Rodríguez-Fernández E; Cuerno R Phys Rev E; 2020 May; 101(5-1):052126. PubMed ID: 32575191 [TBL] [Abstract][Full Text] [Related]
19. One-dimensional Kardar-Parisi-Zhang and Kuramoto-Sivashinsky universality class: Limit distributions. Roy D; Pandit R Phys Rev E; 2020 Mar; 101(3-1):030103. PubMed ID: 32289936 [TBL] [Abstract][Full Text] [Related]
20. Crossover effects in a discrete deposition model with Kardar-Parisi-Zhang scaling. Chame A; Aarão Reis FD Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051104. PubMed ID: 12513464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]