These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion. Cushman JH; O'Malley D; Park M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995 [TBL] [Abstract][Full Text] [Related]
6. Power law polydispersity and fractal structure of hyperbranched polymers. Buzza DM Eur Phys J E Soft Matter; 2004 Jan; 13(1):79-86. PubMed ID: 15024618 [TBL] [Abstract][Full Text] [Related]
7. Conformational entropy of a polymer chain grafted to rough surfaces. Nowicki W; Nowicka G; Dokowicz M; Mańka A J Mol Model; 2013 Jan; 19(1):337-48. PubMed ID: 22918701 [TBL] [Abstract][Full Text] [Related]
8. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Jeon JH; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021103. PubMed ID: 20365526 [TBL] [Abstract][Full Text] [Related]
9. Fractal feature analysis and classification in medical imaging. Chen CC; Daponte JS; Fox MD IEEE Trans Med Imaging; 1989; 8(2):133-42. PubMed ID: 18230510 [TBL] [Abstract][Full Text] [Related]
10. Bayesian analysis of single-particle tracking data using the nested-sampling algorithm: maximum-likelihood model selection applied to stochastic-diffusivity data. Thapa S; Lomholt MA; Krog J; Cherstvy AG; Metzler R Phys Chem Chem Phys; 2018 Nov; 20(46):29018-29037. PubMed ID: 30255886 [TBL] [Abstract][Full Text] [Related]
11. Probabilistic phase space trajectory description for anomalous polymer dynamics. Panja D J Phys Condens Matter; 2011 Mar; 23(10):105103. PubMed ID: 21335642 [TBL] [Abstract][Full Text] [Related]
12. Quantification of interaction and topological parameters of polyisoprene star polymers under good solvent conditions. Rai DK; Beaucage G; Ratkanthwar K; Beaucage P; Ramachandran R; Hadjichristidis N Phys Rev E; 2016 May; 93(5):052501. PubMed ID: 27300939 [TBL] [Abstract][Full Text] [Related]
13. Nanobubbles in Ultrapure Water Can Self-Propel. Bakalis E; Efthymiopoulos P; Lugli F; Mitropoulos AC; Kyzas GZ; Zerbetto F Chemphyschem; 2024 Sep; ():e202400508. PubMed ID: 39230445 [TBL] [Abstract][Full Text] [Related]
14. Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification. Liu SC; Chang S IEEE Trans Image Process; 1997; 6(8):1176-84. PubMed ID: 18283005 [TBL] [Abstract][Full Text] [Related]
15. Exact sampling of polymer conformations using Brownian bridges. Wang S; Ramkrishna D; Narsimhan V J Chem Phys; 2020 Jul; 153(3):034901. PubMed ID: 32716178 [TBL] [Abstract][Full Text] [Related]
17. Fractal analysis of recurrence networks constructed from the two-dimensional fractional Brownian motions. Liu JL; Yu ZG; Leung Y; Fung T; Zhou Y Chaos; 2020 Nov; 30(11):113123. PubMed ID: 33261323 [TBL] [Abstract][Full Text] [Related]
18. Fractional Brownian motion run with a multi-scaling clock mimics diffusion of spherical colloids in microstructural fluids. Park M; Cushman JH; O'Malley D Langmuir; 2014 Sep; 30(38):11263-6. PubMed ID: 25211535 [TBL] [Abstract][Full Text] [Related]
19. Transient aging in fractional Brownian and Langevin-equation motion. Kursawe J; Schulz J; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062124. PubMed ID: 24483403 [TBL] [Abstract][Full Text] [Related]