These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 30999429)

  • 21. Phase separation of model adsorbates in random matrices.
    Pellicane G; Lee LL
    Phys Chem Chem Phys; 2007 Mar; 9(9):1064-9. PubMed ID: 17311148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A thermodynamic self-consistent theory of asymmetric hard-core Yukawa mixtures.
    Pellicane G; Caccamo C
    J Phys Condens Matter; 2016 Oct; 28(41):414009. PubMed ID: 27545096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Algorithms for the computation of solutions of the Ornstein-Zernike equation.
    Peplow AT; Beardmore RE; Bresme F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046705. PubMed ID: 17155210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Statistical theory of critical phenomena in fluids.
    Martynov GA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031119. PubMed ID: 19391914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reference hypernetted chain theory for ferrofluid bilayer: distribution functions compared with Monte Carlo.
    Polyakov EA; Vorontsov-Velyaminov PN
    J Chem Phys; 2014 Aug; 141(8):084109. PubMed ID: 25173007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of highly asymmetric hard-sphere mixtures: an efficient closure of the Ornstein-Zernike equations.
    Amokrane S; Ayadim A; Malherbe JG
    J Chem Phys; 2005 Nov; 123(17):174508. PubMed ID: 16375547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Ornstein-Zernike equation and critical phenomena in fluids.
    Martynov GA
    J Chem Phys; 2008 Dec; 129(24):244509. PubMed ID: 19123519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Liquids in equilibrium: beyond the hypernetted chain.
    Donley JP
    Eur Phys J E Soft Matter; 2005 Mar; 16(3):273-82. PubMed ID: 15685437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and thermodynamic properties of a binary liquid in a porous matrix: the formalism.
    Paschinger E; Kahl G
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):5330-8. PubMed ID: 11031581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Criticality of a liquid-vapor interface from an inhomogeneous integral equation theory.
    Omelyan I; Hirata F; Kovalenko A
    Phys Chem Chem Phys; 2005 Dec; 7(24):4132-7. PubMed ID: 16474878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of the Replica Ornstein-Zernike Equations to Study Submonolayer Adsorption on Energetically Heterogeneous Surfaces.
    Rzysko W; Pizio O; Sokolowski S; Sokolowska Z
    J Colloid Interface Sci; 1999 Nov; 219(1):184-189. PubMed ID: 10527586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integral equation theory for a mixture of spherical and patchy colloids: analytical description.
    Kalyuzhnyi YV; Nezbeda I; Cummings PT
    Soft Matter; 2020 Apr; 16(14):3456-3465. PubMed ID: 32201867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of a diatomic molecular fluid into random porous media.
    Fernaud MJ; Lomba E; Weis JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051501. PubMed ID: 11735923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reference interaction site model investigation of homonuclear hard dumbbells under simple fluid theory closures: comparison with Monte Carlo simulations.
    Munaò G; Costa D; Caccamo C
    J Chem Phys; 2009 Apr; 130(14):144504. PubMed ID: 19368458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A closure relation to molecular theory of solvation for macromolecules.
    Kobryn AE; Gusarov S; Kovalenko A
    J Phys Condens Matter; 2016 Oct; 28(40):404003. PubMed ID: 27549008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generalized coupling parameter expansion: application to square well and Lennard-Jones fluids.
    Sai Venkata Ramana A
    J Chem Phys; 2013 Jul; 139(4):044106. PubMed ID: 23901959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An integral equation and simulation study of hydrogen inclusions in a molecular crystal of short-capped nanotubes.
    Lomba E; Bores C; Notario R; Sánchez-Gil V
    J Phys Condens Matter; 2016 Sep; 28(34):344006. PubMed ID: 27367179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulational and theoretical study of the spherical electrical double layer for a size-asymmetric electrolyte: the case of big coions.
    Guerrero-García GI; González-Tovar E; Chávez-Páez M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021501. PubMed ID: 19792127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of molecular liquids: cavity and bridge functions of the hard spheroid fluid.
    Cheung DL; Anton L; Allen MP; Masters AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061204. PubMed ID: 16906815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Communication: An exact bound on the bridge function in integral equation theories.
    Kast SM; Tomazic D
    J Chem Phys; 2012 Nov; 137(17):171102. PubMed ID: 23145709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.