These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 30999433)
21. Chaotic motion due to lateral Casimir forces during nonlinear actuation dynamics. Tajik F; Masoudi AA; Sedighi M; Palasantzas G Chaos; 2020 Jul; 30(7):073101. PubMed ID: 32752649 [TBL] [Abstract][Full Text] [Related]
22. Localization properties of groups of eigenstates in chaotic systems. Wisniacki DA; Borondo F; Vergini E; Benito RM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066220. PubMed ID: 11415219 [TBL] [Abstract][Full Text] [Related]
23. Homoclinic-doubling and homoclinic-gluing bifurcations in the Takens-Bogdanov normal form with Qin BW; Chung KW; RodrÃguez-Luis AJ; Belhaq M Chaos; 2018 Sep; 28(9):093107. PubMed ID: 30278647 [TBL] [Abstract][Full Text] [Related]
24. Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification. Nair V; Sujith RI Chaos; 2013 Sep; 23(3):033136. PubMed ID: 24089972 [TBL] [Abstract][Full Text] [Related]
25. Thirty years of turnstiles and transport. Meiss JD Chaos; 2015 Sep; 25(9):097602. PubMed ID: 26428555 [TBL] [Abstract][Full Text] [Related]
26. Bifurcations and stability of nondegenerated homoclinic loops for higher dimensional systems. Jin Y; Li F; Xu H; Li J; Zhang L; Ding B Comput Math Methods Med; 2013; 2013():582820. PubMed ID: 24369487 [TBL] [Abstract][Full Text] [Related]
27. Unstable periodic orbits and noise in chaos computing. Kia B; Dari A; Ditto WL; Spano ML Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394 [TBL] [Abstract][Full Text] [Related]
28. Asymptotic relationship between homoclinic points and periodic orbit stability exponents. Li J; Tomsovic S Phys Rev E; 2019 Nov; 100(5-1):052202. PubMed ID: 31870019 [TBL] [Abstract][Full Text] [Related]
29. Classical invariants and the quantization of chaotic systems. Wisniacki DA; Vergini E; Benito RM; Borondo F Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):035202. PubMed ID: 15524573 [TBL] [Abstract][Full Text] [Related]
31. Lagrangian descriptors for open maps. Carlo GG; Borondo F Phys Rev E; 2020 Feb; 101(2-1):022208. PubMed ID: 32168688 [TBL] [Abstract][Full Text] [Related]
32. Using heteroclinic orbits to quantify topological entropy in fluid flows. Sattari S; Chen Q; Mitchell KA Chaos; 2016 Mar; 26(3):033112. PubMed ID: 27036190 [TBL] [Abstract][Full Text] [Related]
33. Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method. Wang Y; Li FM; Wang YZ Chaos; 2015 Jun; 25(6):063108. PubMed ID: 26117102 [TBL] [Abstract][Full Text] [Related]
34. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits. Fujii M; Yamashita K J Chem Phys; 2015 Feb; 142(7):074104. PubMed ID: 25701999 [TBL] [Abstract][Full Text] [Related]
35. Scar and antiscar quantum effects in open chaotic systems. Kaplan L Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5325-37. PubMed ID: 11969492 [TBL] [Abstract][Full Text] [Related]
36. Sliding homoclinic bifurcations in a Lorenz-type system: Analytic proofs. Belykh VN; Barabash NV; Belykh IV Chaos; 2021 Apr; 31(4):043117. PubMed ID: 34251222 [TBL] [Abstract][Full Text] [Related]
37. Shilnikov homoclinic orbit bifurcations in the Chua's circuit. Medrano-T RO; Baptista MS; Caldas IL Chaos; 2006 Dec; 16(4):043119. PubMed ID: 17199397 [TBL] [Abstract][Full Text] [Related]