These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30999433)

  • 21. Chaotic motion due to lateral Casimir forces during nonlinear actuation dynamics.
    Tajik F; Masoudi AA; Sedighi M; Palasantzas G
    Chaos; 2020 Jul; 30(7):073101. PubMed ID: 32752649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Localization properties of groups of eigenstates in chaotic systems.
    Wisniacki DA; Borondo F; Vergini E; Benito RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066220. PubMed ID: 11415219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homoclinic-doubling and homoclinic-gluing bifurcations in the Takens-Bogdanov normal form with
    Qin BW; Chung KW; Rodríguez-Luis AJ; Belhaq M
    Chaos; 2018 Sep; 28(9):093107. PubMed ID: 30278647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification.
    Nair V; Sujith RI
    Chaos; 2013 Sep; 23(3):033136. PubMed ID: 24089972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thirty years of turnstiles and transport.
    Meiss JD
    Chaos; 2015 Sep; 25(9):097602. PubMed ID: 26428555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bifurcations and stability of nondegenerated homoclinic loops for higher dimensional systems.
    Jin Y; Li F; Xu H; Li J; Zhang L; Ding B
    Comput Math Methods Med; 2013; 2013():582820. PubMed ID: 24369487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unstable periodic orbits and noise in chaos computing.
    Kia B; Dari A; Ditto WL; Spano ML
    Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Asymptotic relationship between homoclinic points and periodic orbit stability exponents.
    Li J; Tomsovic S
    Phys Rev E; 2019 Nov; 100(5-1):052202. PubMed ID: 31870019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Classical invariants and the quantization of chaotic systems.
    Wisniacki DA; Vergini E; Benito RM; Borondo F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):035202. PubMed ID: 15524573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient manifolds tracing for planar maps.
    Ciro D; Caldas IL; Viana RL; Evans TE
    Chaos; 2018 Sep; 28(9):093106. PubMed ID: 30278620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lagrangian descriptors for open maps.
    Carlo GG; Borondo F
    Phys Rev E; 2020 Feb; 101(2-1):022208. PubMed ID: 32168688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using heteroclinic orbits to quantify topological entropy in fluid flows.
    Sattari S; Chen Q; Mitchell KA
    Chaos; 2016 Mar; 26(3):033112. PubMed ID: 27036190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method.
    Wang Y; Li FM; Wang YZ
    Chaos; 2015 Jun; 25(6):063108. PubMed ID: 26117102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits.
    Fujii M; Yamashita K
    J Chem Phys; 2015 Feb; 142(7):074104. PubMed ID: 25701999
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scar and antiscar quantum effects in open chaotic systems.
    Kaplan L
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5325-37. PubMed ID: 11969492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sliding homoclinic bifurcations in a Lorenz-type system: Analytic proofs.
    Belykh VN; Barabash NV; Belykh IV
    Chaos; 2021 Apr; 31(4):043117. PubMed ID: 34251222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shilnikov homoclinic orbit bifurcations in the Chua's circuit.
    Medrano-T RO; Baptista MS; Caldas IL
    Chaos; 2006 Dec; 16(4):043119. PubMed ID: 17199397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Jacobian-free variational method for computing connecting orbits in nonlinear dynamical systems.
    Ashtari O; Schneider TM
    Chaos; 2023 Jul; 33(7):. PubMed ID: 37459217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Signatures of homoclinic motion in quantum chaos.
    Wisniacki DA; Vergini E; Benito RM; Borondo F
    Phys Rev Lett; 2005 Feb; 94(5):054101. PubMed ID: 15783643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Periodic orbit basis for the quantum baker map.
    Ermann L; Saraceno M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036221. PubMed ID: 18851135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.