These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 30999433)
41. Bifurcations of nontwisted heteroclinic loop with resonant eigenvalues. Jin Y; Zhu X; Guo Z; Xu H; Zhang L; Ding B ScientificWorldJournal; 2014; 2014():716082. PubMed ID: 24892076 [TBL] [Abstract][Full Text] [Related]
42. Sil'nikov chaos of the Liu system. Zhou L; Chen F Chaos; 2008 Mar; 18(1):013113. PubMed ID: 18377064 [TBL] [Abstract][Full Text] [Related]
43. Discrete homoclinic orbits in a laser with feedback. Pisarchik AN; Meucci R; Arecchi FT Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8823-5. PubMed ID: 11138193 [TBL] [Abstract][Full Text] [Related]
44. From collective periodic running states to completely chaotic synchronised states in coupled particle dynamics. Hennig D; Burbanks AD; Osbaldestin AH; Mulhern C Chaos; 2011 Jun; 21(2):023132. PubMed ID: 21721774 [TBL] [Abstract][Full Text] [Related]
45. Bifurcations of orbit and inclination flips heteroclinic loop with nonhyperbolic equilibria. Geng F; Zhao J ScientificWorldJournal; 2014; 2014():585609. PubMed ID: 24987740 [TBL] [Abstract][Full Text] [Related]
46. Using periodic orbits to compute chaotic transport rates between resonance zones. Sattari S; Mitchell KA Chaos; 2017 Nov; 27(11):113104. PubMed ID: 29195324 [TBL] [Abstract][Full Text] [Related]
47. Slow passage through a transcritical bifurcation for Hamiltonian systems and the change in action due to a nonhyperbolic homoclinic orbit. Haberman R Chaos; 2000 Sep; 10(3):641-648. PubMed ID: 12779413 [TBL] [Abstract][Full Text] [Related]
48. Semiclassical study on tunneling processes via complex-domain chaos. Onishi T; Shudo A; Ikeda KS; Takahashi K Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056211. PubMed ID: 14682875 [TBL] [Abstract][Full Text] [Related]
49. Towards a semiclassical understanding of chaotic single- and many-particle quantum dynamics at post-Heisenberg time scales. Waltner D; Richter K Phys Rev E; 2019 Oct; 100(4-1):042212. PubMed ID: 31770924 [TBL] [Abstract][Full Text] [Related]
50. Global bifurcations at the onset of pulse self-replication. Yue B Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056209. PubMed ID: 18233741 [TBL] [Abstract][Full Text] [Related]
51. Universal behavior in the parametric evolution of chaotic saddles. Lai YC; Zyczkowski K; Grebogi C Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5261-5. PubMed ID: 11969484 [TBL] [Abstract][Full Text] [Related]
52. Phase space analysis of the dynamics on a potential energy surface with an entrance channel and two potential wells. Katsanikas M; García-Garrido VJ; Agaoglou M; Wiggins S Phys Rev E; 2020 Jul; 102(1-1):012215. PubMed ID: 32795001 [TBL] [Abstract][Full Text] [Related]
53. Periodic orbits in chaotic systems simulated at low precision. Klöwer M; Coveney PV; Paxton EA; Palmer TN Sci Rep; 2023 Jul; 13(1):11410. PubMed ID: 37452044 [TBL] [Abstract][Full Text] [Related]
54. Heteroclinic bifurcations and chaotic transport in the two-harmonic standard map. Lomelí HE; Calleja R Chaos; 2006 Jun; 16(2):023117. PubMed ID: 16822020 [TBL] [Abstract][Full Text] [Related]
55. Limit cycles and homoclinic networks in two-dimensional polynomial systems. Luo ACJ Chaos; 2024 Feb; 34(2):. PubMed ID: 38412536 [TBL] [Abstract][Full Text] [Related]
56. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation. Pereira RF; de S Pinto SE; Viana RL; Lopes SR; Grebogi C Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685 [TBL] [Abstract][Full Text] [Related]
57. Universality in chaotic quantum transport: the concordance between random-matrix and semiclassical theories. Berkolaiko G; Kuipers J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):045201. PubMed ID: 22680530 [TBL] [Abstract][Full Text] [Related]
58. Efficient noncausal noise reduction for deterministic time series. Brocker J; Parlitz U Chaos; 2001 Jun; 11(2):319-326. PubMed ID: 12779465 [TBL] [Abstract][Full Text] [Related]
59. Symmetric replicator dynamics with depletable resources. Mitchener WG Chaos; 2022 Apr; 32(4):043121. PubMed ID: 35489865 [TBL] [Abstract][Full Text] [Related]