BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30999444)

  • 21. A symmetry suppresses the cochlear catastrophe.
    Shera CA; Zweig G
    J Acoust Soc Am; 1991 Mar; 89(3):1276-89. PubMed ID: 2030215
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of rocking stapes motions on the cochlear fluid flow and on the basilar membrane motion.
    Edom E; Obrist D; Henniger R; Kleiser L; Sim JH; Huber AM
    J Acoust Soc Am; 2013 Nov; 134(5):3749-58. PubMed ID: 24180785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Forward and reverse waves in nonclassical models of the cochlea.
    de Boer E
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2819-21. PubMed ID: 17550180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of WKB calculations and experimental results for three-dimensional cochlear models.
    Steele CR; Taber LA
    J Acoust Soc Am; 1979 Apr; 65(4):1007-18. PubMed ID: 447914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping the cochlear partition's stiffness to its cellular architecture.
    Olson ES; Mountain DC
    J Acoust Soc Am; 1994 Jan; 95(1):395-400. PubMed ID: 8120250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A cylindrical cochlea model: the bridge between two and three dimensions.
    de Boer E
    Hear Res; 1980 Aug; 3(2):109-31. PubMed ID: 7419481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using acoustic distortion products to measure the cochlear amplifier gain on the basilar membrane.
    Allen JB; Fahey PF
    J Acoust Soc Am; 1992 Jul; 92(1):178-88. PubMed ID: 1512322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of basilar membrane radial velocity profile on fluid coupling in the cochlea.
    Ni G; Elliott SJ
    J Acoust Soc Am; 2013 Mar; 133(3):EL181-7. PubMed ID: 23464126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep-water waves in the cochlea.
    de Boer E
    Hear Res; 1980 Aug; 3(2):97-108. PubMed ID: 7419485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Otoacoustic emissions in time-domain solutions of nonlinear non-local cochlear models.
    Moleti A; Paternoster N; Bertaccini D; Sisto R; Sanjust F
    J Acoust Soc Am; 2009 Nov; 126(5):2425-36. PubMed ID: 19894824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Boundary-layer damping of traveling waves in a three-dimensional passive finite-element model of the human cochlea].
    Böhnke F; Sigloch M
    Z Med Phys; 2020 Aug; 30(3):174-184. PubMed ID: 32093906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the fluid-structure interaction in the cochlea.
    Rapson MJ; Hamilton TJ; Tapson JC
    J Acoust Soc Am; 2014 Jul; 136(1):284-300. PubMed ID: 24993214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wave propagation and dispersion in the cochlea.
    de Boer E; Viergever MA
    Hear Res; 1984 Feb; 13(2):101-12. PubMed ID: 6715260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On Riccati equations describing impedance relations for forward and backward excitation in the one-dimensional cochlea model.
    Kaernbach C; König P; Schillen T
    J Acoust Soc Am; 1987 Feb; 81(2):408-11. PubMed ID: 3558956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting the effect of post-implant cochlear fibrosis on residual hearing.
    Choi CH; Oghalai JS
    Hear Res; 2005 Jul; 205(1-2):193-200. PubMed ID: 15953528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A parametric study of cochlear input impedance.
    Puria S; Allen JB
    J Acoust Soc Am; 1991 Jan; 89(1):287-309. PubMed ID: 2002170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cochlear perfusion with a viscous fluid.
    Wang Y; Olson ES
    Hear Res; 2016 Jul; 337():1-11. PubMed ID: 27220484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The importance of phase data and model dimensionality to cochlear mechanics.
    Kolston PJ
    Hear Res; 2000 Jul; 145(1-2):25-36. PubMed ID: 10867274
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Foundations of the Wentzel-Kramers-Brillouin approximation for models of cochlear mechanics in 1- and 2-D.
    Frost BL
    J Acoust Soc Am; 2024 Jan; 155(1):358-379. PubMed ID: 38236807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward three-dimensional analysis of cochlear structure.
    Steele CR
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(5):238-51. PubMed ID: 10529645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.