These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30999476)

  • 1. Phase-field modeling of an immiscible liquid-liquid displacement in a capillary.
    Prokopev S; Vorobev A; Lyubimova T
    Phys Rev E; 2019 Mar; 99(3-1):033113. PubMed ID: 30999476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous micropillar structures for retaining low surface tension liquids.
    Agonafer DD; Lee H; Vasquez PA; Won Y; Jung KW; Lingamneni S; Ma B; Shan L; Shuai S; Du Z; Maitra T; Palko JW; Goodson KE
    J Colloid Interface Sci; 2018 Mar; 514():316-327. PubMed ID: 29275250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains.
    Yiotis A; Karadimitriou NK; Zarikos I; Steeb H
    Sci Rep; 2021 Feb; 11(1):3891. PubMed ID: 33594146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of dynamic contact angle on liquid infiltration into inclined capillary tubes: (semi)-analytical solutions.
    Hilpert M
    J Colloid Interface Sci; 2009 Sep; 337(1):138-44. PubMed ID: 19540506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of capillary-driven liquid-liquid displacement in open microchannels.
    Yang D; Krasowska M; Priest C; Ralston J
    Phys Chem Chem Phys; 2014 Nov; 16(44):24473-8. PubMed ID: 25308905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid withdrawal from capillary tubes: explicit and implicit analytical solution for constant and dynamic contact angle.
    Hilpert M
    J Colloid Interface Sci; 2010 Nov; 351(1):267-76. PubMed ID: 20691978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the Dynamic Contact Angle Using a Direct Numerical Simulation Method.
    Zhu G; Yao J; Zhang L; Sun H; Li A; Shams B
    Langmuir; 2016 Nov; 32(45):11736-11744. PubMed ID: 27754675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetting: Inverse Dynamic Problem and Equations for Microscopic Parameters.
    Voinov OV
    J Colloid Interface Sci; 2000 Jun; 226(1):5-15. PubMed ID: 11401339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explicit analytical solutions for liquid infiltration into capillary tubes: dynamic and constant contact angle.
    Hilpert M
    J Colloid Interface Sci; 2010 Apr; 344(1):198-208. PubMed ID: 20106483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forced Wetting Transition and Bubble Pinch-Off in a Capillary Tube.
    Zhao B; Alizadeh Pahlavan A; Cueto-Felgueroso L; Juanes R
    Phys Rev Lett; 2018 Feb; 120(8):084501. PubMed ID: 29543002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shapes and dynamics of miscible liquid/liquid interfaces in horizontal capillary tubes.
    Stevar MS; Vorobev A
    J Colloid Interface Sci; 2012 Oct; 383(1):184-97. PubMed ID: 22809545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dynamic contact angle on liquid withdrawal from capillary tubes: (semi)-analytical solutions.
    Hilpert M
    J Colloid Interface Sci; 2010 Jul; 347(2):315-23. PubMed ID: 20400087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of the spontaneous penetration of liquids into cylindrical capillaries.
    Fick AD; Borhan A
    Ann N Y Acad Sci; 2006 Sep; 1077():426-42. PubMed ID: 17124139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can hydrodynamic contact line paradox be solved by evaporation-condensation?
    Janeček V; Doumenc F; Guerrier B; Nikolayev VS
    J Colloid Interface Sci; 2015 Dec; 460():329-38. PubMed ID: 26348659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of contact line dynamics in a two-dimensional capillary tube by the lattice Boltzmann model.
    Fan L; Fang H; Lin Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 1):051603. PubMed ID: 11414912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of dynamic contact angle on liquid infiltration into horizontal capillary tubes: (semi)-analytical solutions.
    Hilpert M
    J Colloid Interface Sci; 2009 Sep; 337(1):131-7. PubMed ID: 19423129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow.
    Ashish Saha A; Mitra SK
    J Colloid Interface Sci; 2009 Nov; 339(2):461-80. PubMed ID: 19732904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroosmotic flow in a water column surrounded by an immiscible liquid.
    Movahed S; Khani S; Wen JZ; Li D
    J Colloid Interface Sci; 2012 Apr; 372(1):207-11. PubMed ID: 22336326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A visualization study on two-phase gravity drainage in porous media by using magnetic resonance imaging.
    Teng Y; Liu Y; Jiang L; Song Y; Zhao J; Zhang Y; Wang D
    Magn Reson Imaging; 2016 Sep; 34(7):855-63. PubMed ID: 26968140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.