These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 30999514)
21. Brownian motion in time-dependent logarithmic potential: Exact results for dynamics and first-passage properties. Ryabov A; Berestneva E; Holubec V J Chem Phys; 2015 Sep; 143(11):114117. PubMed ID: 26395697 [TBL] [Abstract][Full Text] [Related]
22. Spatial extent of branching Brownian motion. Ramola K; Majumdar SN; Schehr G Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042131. PubMed ID: 25974462 [TBL] [Abstract][Full Text] [Related]
23. First-passage functionals of Brownian motion in logarithmic potentials and heterogeneous diffusion. Radice M Phys Rev E; 2023 Oct; 108(4-1):044151. PubMed ID: 37978608 [TBL] [Abstract][Full Text] [Related]
24. Memory effects in fractional Brownian motion with Hurst exponent H<1/3. Bologna M; Vanni F; Krokhin A; Grigolini P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):020102. PubMed ID: 20866763 [TBL] [Abstract][Full Text] [Related]
25. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Jeon JH; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021103. PubMed ID: 20365526 [TBL] [Abstract][Full Text] [Related]
26. Occupation time statistics of the fractional Brownian motion in a finite domain. Kimura M; Akimoto T Phys Rev E; 2022 Dec; 106(6-1):064132. PubMed ID: 36671174 [TBL] [Abstract][Full Text] [Related]
27. Testing of Multifractional Brownian Motion. Balcerek M; Burnecki K Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33322676 [TBL] [Abstract][Full Text] [Related]
28. Geometrical optics of large deviations of fractional Brownian motion. Meerson B; Oshanin G Phys Rev E; 2022 Jun; 105(6-1):064137. PubMed ID: 35854589 [TBL] [Abstract][Full Text] [Related]
29. Renormalized self-intersection local time of bifractional Brownian motion. Chen Z; Sang L; Hao X J Inequal Appl; 2018; 2018(1):326. PubMed ID: 30839860 [TBL] [Abstract][Full Text] [Related]
30. Sample-to-sample fluctuations of power spectrum of a random motion in a periodic Sinai model. Dean DS; Iorio A; Marinari E; Oshanin G Phys Rev E; 2016 Sep; 94(3-1):032131. PubMed ID: 27739768 [TBL] [Abstract][Full Text] [Related]
31. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion. Cushman JH; O'Malley D; Park M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995 [TBL] [Abstract][Full Text] [Related]
32. Phase transition, scaling of moments, and order-parameter distributions in Brownian particles and branching processes with finite-size effects. Corral Á; Garcia-Millan R; Moloney NR; Font-Clos F Phys Rev E; 2018 Jun; 97(6-1):062156. PubMed ID: 30011443 [TBL] [Abstract][Full Text] [Related]
36. Derivative of the expected supremum of fractional Brownian motion at Bisewski K; Dȩbicki K; Rolski T Queueing Syst; 2022; 102(1-2):53-68. PubMed ID: 36213862 [TBL] [Abstract][Full Text] [Related]
37. Time Between the Maximum and the Minimum of a Stochastic Process. Mori F; Majumdar SN; Schehr G Phys Rev Lett; 2019 Nov; 123(20):200201. PubMed ID: 31809107 [TBL] [Abstract][Full Text] [Related]
39. Local time for run and tumble particle. Singh P; Kundu A Phys Rev E; 2021 Apr; 103(4-1):042119. PubMed ID: 34005947 [TBL] [Abstract][Full Text] [Related]
40. Brownian dynamics simulations for the narrow escape problem in the unit sphere. Srivastava V; Cheviakov A Phys Rev E; 2021 Dec; 104(6-1):064113. PubMed ID: 35030881 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]