These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 30999537)
1. Chaos and Anderson localization in disordered classical chains: Hertzian versus Fermi-Pasta-Ulam-Tsingou models. Ngapasare A; Theocharis G; Richoux O; Skokos C; Achilleos V Phys Rev E; 2019 Mar; 99(3-1):032211. PubMed ID: 30999537 [TBL] [Abstract][Full Text] [Related]
2. Quantization of Integrable and Chaotic Three-Particle Fermi-Pasta-Ulam-Tsingou Models. Arzika AI; Solfanelli A; Schmid H; Ruffo S Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981426 [TBL] [Abstract][Full Text] [Related]
3. The Metastable State of Fermi-Pasta-Ulam-Tsingou Models. Reiss KA; Campbell DK Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832666 [TBL] [Abstract][Full Text] [Related]
4. Gaussian solitary waves and compactons in Fermi-Pasta-Ulam lattices with Hertzian potentials. James G; Pelinovsky D Proc Math Phys Eng Sci; 2014 May; 470(2165):20130462. PubMed ID: 24808748 [TBL] [Abstract][Full Text] [Related]
5. Chaos and quantization of the three-particle generic Fermi-Pasta-Ulam-Tsingou model. I. Density of states and spectral statistics. Yan H; Robnik M Phys Rev E; 2024 May; 109(5-1):054210. PubMed ID: 38907426 [TBL] [Abstract][Full Text] [Related]
6. Behavior and breakdown of higher-order Fermi-Pasta-Ulam-Tsingou recurrences. Pace SD; Campbell DK Chaos; 2019 Feb; 29(2):023132. PubMed ID: 30823711 [TBL] [Abstract][Full Text] [Related]
7. Chaos and Anderson-like localization in polydisperse granular chains. Achilleos V; Theocharis G; Skokos C Phys Rev E; 2018 Apr; 97(4-1):042220. PubMed ID: 29758770 [TBL] [Abstract][Full Text] [Related]
8. Ballistic resonance and thermalization in the Fermi-Pasta-Ulam-Tsingou chain at finite temperature. Kuzkin VA; Krivtsov AM Phys Rev E; 2020 Apr; 101(4-1):042209. PubMed ID: 32422754 [TBL] [Abstract][Full Text] [Related]
9. Double Scaling in the Relaxation Time in the β-Fermi-Pasta-Ulam-Tsingou Model. Lvov YV; Onorato M Phys Rev Lett; 2018 Apr; 120(14):144301. PubMed ID: 29694112 [TBL] [Abstract][Full Text] [Related]
14. Dynamic crossover towards energy equipartition in the Fermi-Pasta-Ulam-Tsingou β model with long-range interactions. Wang J; Li AC Phys Rev E; 2022 Jul; 106(1-1):014135. PubMed ID: 35974610 [TBL] [Abstract][Full Text] [Related]
15. Recurrence recovery in heterogeneous Fermi-Pasta-Ulam-Tsingou systems. Li Z; Porter MA; Choubey B Chaos; 2023 Sep; 33(9):. PubMed ID: 37676112 [TBL] [Abstract][Full Text] [Related]
16. Chaos and quantization of the three-particle generic Fermi-Pasta-Ulam-Tsingou model. II. Phenomenology of quantum eigenstates. Yan H; Robnik M Phys Rev E; 2024 May; 109(5-1):054211. PubMed ID: 38907483 [TBL] [Abstract][Full Text] [Related]