These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30999549)

  • 1. Anomalous transport dependence on Péclet number, porous medium heterogeneity, and a temporally varying velocity field.
    Nissan A; Berkowitz B
    Phys Rev E; 2019 Mar; 99(3-1):033108. PubMed ID: 30999549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial Effects on Flow and Transport in Heterogeneous Porous Media.
    Nissan A; Berkowitz B
    Phys Rev Lett; 2018 Feb; 120(5):054504. PubMed ID: 29481162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous reactive transport in porous media: Experiments and modeling.
    Edery Y; Dror I; Scher H; Berkowitz B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052130. PubMed ID: 26066142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ubiquity of anomalous transport in porous media: Numerical evidence, continuous time random walk modelling, and hydrodynamic interpretation.
    Yang XR; Wang Y
    Sci Rep; 2019 Mar; 9(1):4601. PubMed ID: 30872610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous time random walk in homogeneous porous media.
    Jiang J; Wu J
    J Contam Hydrol; 2013 Dec; 155():82-6. PubMed ID: 24212049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer-aquitard complexes.
    Zhang Y; Green CT; Tick GR
    J Contam Hydrol; 2015; 177-178():220-38. PubMed ID: 26001981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of diffusion on transverse dispersion in two-dimensional ordered and random porous media.
    Hlushkou D; Piatrusha S; Tallarek U
    Phys Rev E; 2017 Jun; 95(6-1):063108. PubMed ID: 28709263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into non-Fickian solute transport in carbonates.
    Bijeljic B; Mostaghimi P; Blunt MJ
    Water Resour Res; 2013 May; 49(5):2714-2728. PubMed ID: 24223444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport behavior of coupled continuous-time random walks.
    Dentz M; Scher H; Holder D; Berkowitz B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041110. PubMed ID: 18999382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images.
    Bijeljic B; Raeini A; Mostaghimi P; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013011. PubMed ID: 23410430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural Organic Matter Transport Modeling with a Continuous Time Random Walk Approach.
    McInnis DP; Bolster D; Maurice PA
    Environ Eng Sci; 2014 Feb; 31(2):98-106. PubMed ID: 24596449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore-scale statistics of flow and transport through porous media.
    Aramideh S; Vlachos PP; Ardekani AM
    Phys Rev E; 2018 Jul; 98(1-1):013104. PubMed ID: 30110739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvable continuous-time random walk model of the motion of tracer particles through porous media.
    Fouxon I; Holzner M
    Phys Rev E; 2016 Aug; 94(2-1):022132. PubMed ID: 27627271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore-Scale Hydrodynamics in a Progressively Bioclogged Three-Dimensional Porous Medium: 3-D Particle Tracking Experiments and Stochastic Transport Modeling.
    Carrel M; Morales VL; Dentz M; Derlon N; Morgenroth E; Holzner M
    Water Resour Res; 2018 Mar; 54(3):2183-2198. PubMed ID: 29780184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Fickian transport in porous media with bimodal structural heterogeneity.
    Bijeljic B; Rubin S; Scher H; Berkowitz B
    J Contam Hydrol; 2011 Mar; 120-121():213-21. PubMed ID: 20542349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Markov processes for modeling Lagrangian particle dynamics in heterogeneous porous media.
    Le Borgne T; Dentz M; Carrera J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026308. PubMed ID: 18850937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Langevin model for reactive transport in porous media.
    Tartakovsky AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026302. PubMed ID: 20866900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle dispersion through porous media with heterogeneous attractions.
    Darko WK; Mangal D; Conrad JC; Palmer JC
    Soft Matter; 2024 Jan; 20(4):837-847. PubMed ID: 38170621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computing "anomalous" contaminant transport in porous media: the CTRW MATLAB toolbox.
    Cortis A; Berkowitz B
    Ground Water; 2005; 43(6):947-50. PubMed ID: 16324017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical studies of the transport behavior of a passive solute in a two-dimensional incompressible random flow field.
    Dentz M; Kinzelbach H; Attinger S; Kinzelbach W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046306. PubMed ID: 12786486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.