These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30999667)

  • 1. A Technology-Computer-Aided-Design-Based Reliability Prediction Model for DRAM Storage Capacitors.
    Choi WY; Yoon G; Chung WY; Cho Y; Shin S; Ahn KH
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 30999667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Heat Budget After Capacitor Formation on the Leakage Current Characteristics of ZrO₂-Based High-
    Lee JM; Choi PH; Seo JB; Choi BD
    J Nanosci Nanotechnol; 2020 Jan; 20(1):367-372. PubMed ID: 31383180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Ru-Pt alloy electrode to suppress leakage currents of dynamic random-access memory capacitors.
    Pyeon JJ; Cho CJ; Jeong DS; Kim JS; Kang CY; Kim SK
    Nanotechnology; 2018 Nov; 29(45):455202. PubMed ID: 30160244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation for Electrical Performances of the Capacitorless Dynamic Random Access Memory Based on Junctionless FinFETs.
    Cho MS; Yoon YJ; Kim BG; Jung JH; Jang WD; Lee JH; Kang IM
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6755-6761. PubMed ID: 31027024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review on morphotropic phase boundary in fluorite-structure hafnia towards DRAM technology.
    Jung M; Gaddam V; Jeon S
    Nano Converg; 2022 Oct; 9(1):44. PubMed ID: 36182997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the Sensing Margin of Silicon and Poly-Si 1T-DRAM.
    Kim H; Yoo S; Kang IM; Cho S; Sun W; Shin H
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32102235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of a Lateral Grain Boundary for Reducing Performance Variations in Poly-Si 1T-DRAM.
    Yoo S; Sun W; Shin H
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33105643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a Capacitorless DRAM Based on a Polycrystalline-Silicon Dual-Gate MOSFET with a Fin-Shaped Structure.
    An HD; Lee SH; Park J; Min SR; Kim GU; Yoon YJ; Seo JH; Cho MS; Jang J; Bae JH; Lee SH; Kang IM
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-D stacked polycrystalline-silicon-MOSFET-based capacitorless DRAM with superior immunity to grain-boundary's influence.
    Lee SH; Park J; Min SR; Kim GU; Jang J; Bae JH; Lee SH; Kang IM
    Sci Rep; 2022 Aug; 12(1):14455. PubMed ID: 36002621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasma processing for crystallization and densification of atomic layer deposition BaTiO3 thin films.
    An J; Usui T; Logar M; Park J; Thian D; Kim S; Kim K; Prinz FB
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10656-60. PubMed ID: 24946008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Programming Optimization of Capacitorless 1T DRAM Based on the Dual-Gate TFET.
    Li W; Liu H; Wang S; Chen S; Wang Q
    Nanoscale Res Lett; 2017 Sep; 12(1):524. PubMed ID: 28875269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Schottky barrier memory based on heterojunction bandgap engineering for high-density and low-power retention.
    Kim H; Kim Y; Oh K; Park JH; Baek CK
    Discov Nano; 2024 Oct; 19(1):168. PubMed ID: 39375234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A newly developed transparent and flexible one-transistor memory device using advanced nanomaterials for medical and artificial intelligence applications.
    Dai M; Hu Y; Huo C; Webster TJ; Guo L
    Int J Nanomedicine; 2019; 14():5691-5696. PubMed ID: 31413569
    [No Abstract]   [Full Text] [Related]  

  • 14. Electrical and reliability properties of PZT thin films for ULSI DRAM applications.
    Carrano J; Sudhama C; Chikarmane V; Lee J; Tasch A; Shepherd W; Abt N
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(6):690-703. PubMed ID: 18267636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OBET: On-the-Fly Byte-Level Error Tracking for Correcting and Detecting Faults in Unreliable DRAM Systems.
    Nguyen DT; Ho NM; Wong WF; Chang IJ
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a Capacitorless Dynamic Random Access Memory Based on Junctionless Dual-Gate Field-Effect Transistor with a Silicon-Germanium/Silicon Nanotube.
    Lee SH; Cho MS; Mun HJ; Park J; An HD; Jang J; Bae JH; Kang IM
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4235-4242. PubMed ID: 33714309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circuit Optimization Method to Reduce Disturbances in Poly-Si 1T-DRAM.
    Ha Y; Shin H; Sun W; Park J
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage.
    Han F; Meng G; Zhou F; Song L; Li X; Hu X; Zhu X; Wu B; Wei B
    Sci Adv; 2015 Oct; 1(9):e1500605. PubMed ID: 26601294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of One-Transistor Dynamic Random-Access Memory Based on Symmetric Double-Gate Si Junctionless Transistor.
    Kim BG; Seo JH; Yoon YJ; Cho MS; Yu E; Lee JH; Cho S; Kang IM
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6593-6597. PubMed ID: 29677840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of Capacitorless DRAM Based on the Polycrystalline Silicon Nanotube Structure with Multiple Grain Boundaries.
    Park J; Lee SH; Kang GE; Heo JH; Jeon SR; Kim MS; Bae SJ; Hong JW; Jang JW; Bae JH; Lee SH; Kang IM
    Nanomaterials (Basel); 2023 Jul; 13(13):. PubMed ID: 37446542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.