These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 30999681)

  • 41. Induction of apoptosis in small-cell lung cancer cells by an antisense oligodeoxynucleotide targeting the Bcl-2 coding sequence.
    Ziegler A; Luedke GH; Fabbro D; Altmann KH; Stahel RA; Zangemeister-Wittke U
    J Natl Cancer Inst; 1997 Jul; 89(14):1027-36. PubMed ID: 9230884
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of apoptosis in basal cell and squamous cell carcinoma formation.
    Erb P; Ji J; Wernli M; Kump E; Glaser A; Büchner SA
    Immunol Lett; 2005 Aug; 100(1):68-72. PubMed ID: 16054233
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Current surgical and adjuvant therapy concepts of malignant tumors of the facial skin and the pinna].
    Kolk A; Wermker K; Bier H; Götz C; Eckert AW
    Laryngorhinootologie; 2015 Feb; 94(2):77-85. PubMed ID: 25658862
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanisms and prevention of UV-induced melanoma.
    Sample A; He YY
    Photodermatol Photoimmunol Photomed; 2018 Jan; 34(1):13-24. PubMed ID: 28703311
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of glycyrrhizin on UVB-irradiated melanoma cells.
    Rossi T; Benassi L; Magnoni C; Ruberto AI; Coppi A; Baggio G
    In Vivo; 2005; 19(1):319-22. PubMed ID: 15796192
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemosensitization by antisense oligonucleotides targeting MDM2.
    Bianco R; Ciardiello F; Tortora G
    Curr Cancer Drug Targets; 2005 Feb; 5(1):51-6. PubMed ID: 15720189
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bcl-x(L) antisense oligonucleotides radiosensitise colon cancer cells.
    Wacheck V; Selzer E; Günsberg P; Lucas T; Meyer H; Thallinger C; Monia BP; Jansen B
    Br J Cancer; 2003 Oct; 89(7):1352-7. PubMed ID: 14520471
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Apoptosis and pathogenesis of melanoma and nonmelanoma skin cancer.
    Erb P; Ji J; Kump E; Mielgo A; Wernli M
    Adv Exp Med Biol; 2008; 624():283-95. PubMed ID: 18348464
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Role of tumor microenvironment in the formation and progression of skin melanoma].
    Olbryt M
    Postepy Hig Med Dosw (Online); 2013 May; 67():413-32. PubMed ID: 23756376
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sun exposure and skin cancer, and the puzzle of cutaneous melanoma: A perspective on Fears et al. Mathematical models of age and ultraviolet effects on the incidence of skin cancer among whites in the United States. American Journal of Epidemiology 1977; 105: 420-427.
    Armstrong BK; Cust AE
    Cancer Epidemiol; 2017 Jun; 48():147-156. PubMed ID: 28478931
    [TBL] [Abstract][Full Text] [Related]  

  • 51. p53 plays a central role in UVA and UVB induced cell damage and apoptosis in melanoma cells.
    Zhang H
    Cancer Lett; 2006 Dec; 244(2):229-38. PubMed ID: 16504377
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [UV-induced skin cancers].
    Hönigsmann H; Diepgen TL
    J Dtsch Dermatol Ges; 2005 Sep; 3 Suppl 2():S26-31. PubMed ID: 16117740
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [ASSOCIATION OF SKIN PHOTOTYPE AND UV EXPOSURE WITH EXPRESSION OF HER RECEPTORS, Ki67 AND p53 IN PATIENTS WITH CUTANEOUS SQUAMOUS CELL CARCINOMA].
    Drvar DL; Lipozenčić J; Mokos ZB; Ilić I; Knežević F
    Acta Med Croatica; 2015; 69(5):431-8. PubMed ID: 29087088
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultraviolet radiation-induced skin tumors in a South American opossum (Monodelphis domestica).
    Kusewitt DF; Applegate LA; Ley RD
    Vet Pathol; 1991 Jan; 28(1):55-65. PubMed ID: 2017828
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultraviolet radiation.
    Gallagher RP; Lee TK; Bajdik CD; Borugian M
    Chronic Dis Can; 2010; 29 Suppl 1():51-68. PubMed ID: 21199599
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Induction of melanoma phenotypes in human skin by growth factors and ultraviolet B.
    Berking C; Takemoto R; Satyamoorthy K; Shirakawa T; Eskandarpour M; Hansson J; VanBelle PA; Elder DE; Herlyn M
    Cancer Res; 2004 Feb; 64(3):807-11. PubMed ID: 14871803
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Targeting BRAF in advanced melanoma: a first step toward manageable disease.
    Vultur A; Villanueva J; Herlyn M
    Clin Cancer Res; 2011 Apr; 17(7):1658-63. PubMed ID: 21447722
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Macroenvironment-gene-microenvironment interactions in ultraviolet radiation-induced melanomagenesis.
    Mo X; Preston S; Zaidi MR
    Adv Cancer Res; 2019; 144():1-54. PubMed ID: 31349897
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DDB2 gene disruption leads to skin tumors and resistance to apoptosis after exposure to ultraviolet light but not a chemical carcinogen.
    Itoh T; Cado D; Kamide R; Linn S
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2052-7. PubMed ID: 14769931
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dietary immunosuppressants do not enhance UV-induced skin carcinogenesis, and reveal discordance between p53-mutant early clones and carcinomas.
    Voskamp P; Bodmann CA; Koehl GE; Rebel HG; Van Olderen MG; Gaumann A; El Ghalbzouri A; Tensen CP; Bavinck JN; Willemze R; Geissler EK; De Gruijl FR
    Cancer Prev Res (Phila); 2013 Feb; 6(2):129-38. PubMed ID: 23233735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.