BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

637 related articles for article (PubMed ID: 30999843)

  • 1. RIP-Chip analysis supports different roles for AGO2 and GW182 proteins in recruiting and processing microRNA targets.
    Perconti G; Rubino P; Contino F; Bivona S; Bertolazzi G; Tumminello M; Feo S; Giallongo A; Coronnello C
    BMC Bioinformatics; 2019 Apr; 20(Suppl 4):120. PubMed ID: 30999843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function of GW182 and GW bodies in siRNA and miRNA pathways.
    Yao B; Li S; Chan EK
    Adv Exp Med Biol; 2013; 768():71-96. PubMed ID: 23224966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression.
    Takimoto K; Wakiyama M; Yokoyama S
    RNA; 2009 Jun; 15(6):1078-89. PubMed ID: 19398495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dcp1a and GW182 Induce Distinct Cellular Aggregates and Have Different Effects on microRNA Pathway.
    Wang X; Chang L; Wang H; Su A; Wu Z
    DNA Cell Biol; 2017 Jul; 36(7):565-570. PubMed ID: 28488892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Requirement for GW182 Scaffolding Protein Depends on Whether Argonaute Is Mediating Translation, Transcription, or Splicing.
    Liu J; Liu Z; Corey DR
    Biochemistry; 2018 Sep; 57(35):5247-5256. PubMed ID: 30086238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of Ago2-GW182 functional interactions.
    Yao B; Li S; Lian SL; Fritzler MJ; Chan EK
    Methods Mol Biol; 2011; 725():45-62. PubMed ID: 21528446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing.
    Lian SL; Li S; Abadal GX; Pauley BA; Fritzler MJ; Chan EK
    RNA; 2009 May; 15(5):804-13. PubMed ID: 19324964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide identification of translationally inhibited and degraded miR-155 targets using RNA-interacting protein-IP.
    Meier J; Hovestadt V; Zapatka M; Pscherer A; Lichter P; Seiffert M
    RNA Biol; 2013 Jun; 10(6):1018-29. PubMed ID: 23673373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An SNP in the trinucleotide repeat region of the TNRC6A gene maps to a major TNGW1 autoepitope in patients with autoantibodies to GW182.
    Moser JJ; Chan EK; Fritzler MJ
    Adv Exp Med Biol; 2013; 768():243-59. PubMed ID: 23224974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivalent Recruitment of Human Argonaute by GW182.
    Elkayam E; Faehnle CR; Morales M; Sun J; Li H; Joshua-Tor L
    Mol Cell; 2017 Aug; 67(4):646-658.e3. PubMed ID: 28781232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening for possible miRNA-mRNA associations in a colon cancer cell line.
    Kanematsu S; Tanimoto K; Suzuki Y; Sugano S
    Gene; 2014 Jan; 533(2):520-31. PubMed ID: 23939471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity.
    Gibbings DJ; Ciaudo C; Erhardt M; Voinnet O
    Nat Cell Biol; 2009 Sep; 11(9):1143-9. PubMed ID: 19684575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-terminal Ago-binding domain of GW182 contains a tryptophan-rich region that confer binding to the CCR4-NOT complex.
    Wakiyama M; Takimoto K
    Genes Cells; 2022 Sep; 27(9):579-585. PubMed ID: 35822830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining a new role of GW182 in maintaining miRNA stability.
    Yao B; La LB; Chen YC; Chang LJ; Chan EK
    EMBO Rep; 2012 Dec; 13(12):1102-8. PubMed ID: 23090477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GW182 Proteins Restrict Extracellular Vesicle-Mediated Export of MicroRNAs in Mammalian Cancer Cells.
    Ghosh S; Mukherjee K; Chakrabarty Y; Chatterjee S; Ghoshal B; Bhattacharyya SN
    Mol Cell Biol; 2021 Apr; 41(5):. PubMed ID: 33685914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of GW182 proteins in miRNA-mediated gene silencing.
    Braun JE; Huntzinger E; Izaurralde E
    Adv Exp Med Biol; 2013; 768():147-63. PubMed ID: 23224969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The p90 ribosomal S6 kinase-UBR5 pathway controls Toll-like receptor signaling via miRNA-induced translational inhibition of tumor necrosis factor receptor-associated factor 3.
    Cho JH; Kim SA; Seo YS; Park SG; Park BC; Kim JH; Kim S
    J Biol Chem; 2017 Jul; 292(28):11804-11814. PubMed ID: 28559278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dysregulated RNA-Induced Silencing Complex (RISC) Assembly within CNS Corresponds with Abnormal miRNA Expression during Autoimmune Demyelination.
    Lewkowicz P; CwikliƄska H; Mycko MP; Cichalewska M; Domowicz M; Lewkowicz N; Jurewicz A; Selmaj KW
    J Neurosci; 2015 May; 35(19):7521-37. PubMed ID: 25972178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of the argonaute protein Ago2 and microRNAs in the RNA induced silencing complex (RISC) using a monoclonal antibody.
    Ikeda K; Satoh M; Pauley KM; Fritzler MJ; Reeves WH; Chan EK
    J Immunol Methods; 2006 Dec; 317(1-2):38-44. PubMed ID: 17054975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improvement of ComiR algorithm for microRNA target prediction by exploiting coding region sequences of mRNAs.
    Bertolazzi G; Benos PV; Tumminello M; Coronnello C
    BMC Bioinformatics; 2020 Sep; 21(Suppl 8):201. PubMed ID: 32938407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.