These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

586 related articles for article (PubMed ID: 30999844)

  • 1. SQUAT: a Sequencing Quality Assessment Tool for data quality assessments of genome assemblies.
    Yang LA; Chang YJ; Chen SH; Lin CY; Ho JM
    BMC Genomics; 2019 Apr; 19(Suppl 9):238. PubMed ID: 30999844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MaGuS: a tool for quality assessment and scaffolding of genome assemblies with Whole Genome Profiling™ Data.
    Madoui MA; Dossat C; d'Agata L; van Oeveren J; van der Vossen E; Aury JM
    BMC Bioinformatics; 2016 Mar; 17():115. PubMed ID: 26936254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies.
    Mapleson D; Garcia Accinelli G; Kettleborough G; Wright J; Clavijo BJ
    Bioinformatics; 2017 Feb; 33(4):574-576. PubMed ID: 27797770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NucBreak: location of structural errors in a genome assembly by using paired-end Illumina reads.
    Khelik K; Sandve GK; Nederbragt AJ; Rognes T
    BMC Bioinformatics; 2020 Feb; 21(1):66. PubMed ID: 32085722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ARCS: scaffolding genome drafts with linked reads.
    Yeo S; Coombe L; Warren RL; Chu J; Birol I
    Bioinformatics; 2018 Mar; 34(5):725-731. PubMed ID: 29069293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scanPAV: a pipeline for extracting presence-absence variations in genome pairs.
    Giordano F; Stammnitz MR; Murchison EP; Ning Z
    Bioinformatics; 2018 Sep; 34(17):3022-3024. PubMed ID: 29608694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads.
    Wick RR; Judd LM; Gorrie CL; Holt KE
    PLoS Comput Biol; 2017 Jun; 13(6):e1005595. PubMed ID: 28594827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SpLitteR: diploid genome assembly using TELL-Seq linked-reads and assembly graphs.
    Tolstoganov I; Chen Z; Pevzner P; Korobeynikov A
    PeerJ; 2024; 12():e18050. PubMed ID: 39351368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LongStitch: high-quality genome assembly correction and scaffolding using long reads.
    Coombe L; Li JX; Lo T; Wong J; Nikolic V; Warren RL; Birol I
    BMC Bioinformatics; 2021 Oct; 22(1):534. PubMed ID: 34717540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers.
    Coombe L; Zhang J; Vandervalk BP; Chu J; Jackman SD; Birol I; Warren RL
    BMC Bioinformatics; 2018 Jun; 19(1):234. PubMed ID: 29925315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly.
    Xu GC; Xu TJ; Zhu R; Zhang Y; Li SQ; Wang HW; Li JT
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30576505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SMRT sequencing only de novo assembly of the sugar beet (Beta vulgaris) chloroplast genome.
    Stadermann KB; Weisshaar B; Holtgräwe D
    BMC Bioinformatics; 2015 Sep; 16(1):295. PubMed ID: 26377912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ntLink: A Toolkit for De Novo Genome Assembly Scaffolding and Mapping Using Long Reads.
    Coombe L; Warren RL; Wong J; Nikolic V; Birol I
    Curr Protoc; 2023 Apr; 3(4):e733. PubMed ID: 37039735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DENTIST-using long reads for closing assembly gaps at high accuracy.
    Ludwig A; Pippel M; Myers G; Hiller M
    Gigascience; 2022 Jan; 11():. PubMed ID: 35077539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novo&Stitch: accurate reconciliation of genome assemblies via optical maps.
    Pan W; Wanamaker SI; Ah-Fong AMV; Judelson HS; Lonardi S
    Bioinformatics; 2018 Jul; 34(13):i43-i51. PubMed ID: 29949964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A spectral algorithm for fast de novo layout of uncorrected long nanopore reads.
    Recanati A; Brüls T; d'Aspremont A
    Bioinformatics; 2017 Oct; 33(20):3188-3194. PubMed ID: 28605450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. misFinder: identify mis-assemblies in an unbiased manner using reference and paired-end reads.
    Zhu X; Leung HC; Wang R; Chin FY; Yiu SM; Quan G; Li Y; Zhang R; Jiang Q; Liu B; Dong Y; Zhou G; Wang Y
    BMC Bioinformatics; 2015 Nov; 16():386. PubMed ID: 26573684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the benefits of using mate-pairs to resolve repeats in de novo short-read prokaryotic assemblies.
    Wetzel J; Kingsford C; Pop M
    BMC Bioinformatics; 2011 Apr; 12():95. PubMed ID: 21486487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GALA: a computational framework for de novo chromosome-by-chromosome assembly with long reads.
    Awad M; Gan X
    Nat Commun; 2023 Jan; 14(1):204. PubMed ID: 36639368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.