These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 30999850)
1. Analysis of microRNAs, phased small interfering RNAs and their potential targets in Rosarugosa Thunb. Guo J; Wang Q; Liu L; Ren S; Li S; Liao P; Zhao Z; Lu C; Jiang B; Sunkar R; Zheng Y BMC Genomics; 2019 Apr; 19(Suppl 9):983. PubMed ID: 30999850 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide identification and comprehensive analysis of microRNAs and phased small interfering RNAs in watermelon. Liu L; Ren S; Guo J; Wang Q; Zhang X; Liao P; Li S; Sunkar R; Zheng Y BMC Genomics; 2018 May; 19(Suppl 2):111. PubMed ID: 29764387 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide discovery and analysis of phased small interfering RNAs in Chinese sacred lotus. Zheng Y; Wang S; Sunkar R PLoS One; 2014; 9(12):e113790. PubMed ID: 25469507 [TBL] [Abstract][Full Text] [Related]
4. Phased secondary small interfering RNAs in Panaxnotoginseng. Chen K; Liu L; Zhang X; Yuan Y; Ren S; Guo J; Wang Q; Liao P; Li S; Cui X; Li YF; Zheng Y BMC Genomics; 2018 Jan; 19(Suppl 1):41. PubMed ID: 29363419 [TBL] [Abstract][Full Text] [Related]
5. Extensive Families of miRNAs and PHAS Loci in Norway Spruce Demonstrate the Origins of Complex phasiRNA Networks in Seed Plants. Xia R; Xu J; Arikit S; Meyers BC Mol Biol Evol; 2015 Nov; 32(11):2905-18. PubMed ID: 26318183 [TBL] [Abstract][Full Text] [Related]
6. High throughput sequencing of small RNA component of leaves and inflorescence revealed conserved and novel miRNAs as well as phasiRNA loci in chickpea. Srivastava S; Zheng Y; Kudapa H; Jagadeeswaran G; Hivrale V; Varshney RK; Sunkar R Plant Sci; 2015 Jun; 235():46-57. PubMed ID: 25900565 [TBL] [Abstract][Full Text] [Related]
7. Conserved and non-conserved triggers of 24-nucleotide reproductive phasiRNAs in eudicots. Pokhrel S; Huang K; Meyers BC Plant J; 2021 Sep; 107(5):1332-1345. PubMed ID: 34160111 [TBL] [Abstract][Full Text] [Related]
8. Integrative analysis of miRNA profile and degradome reveals post-transcription regulation involved in fragrance formation of Rosa rugosa. Wei G; Xu M; Shi X; Wang Y; Shi Y; Wang J; Feng L Int J Biol Macromol; 2024 Nov; 279(Pt 3):135266. PubMed ID: 39244114 [TBL] [Abstract][Full Text] [Related]
9. Biogenesis of diverse plant phasiRNAs involves an miRNA-trigger and Dicer-processing. Komiya R J Plant Res; 2017 Jan; 130(1):17-23. PubMed ID: 27900550 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Small RNA Profiles of Glycine max and Glycine soja at Early Developmental Stages. Sun Y; Mui Z; Liu X; Yim AK; Qin H; Wong FL; Chan TF; Yiu SM; Lam HM; Lim BL Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27929436 [TBL] [Abstract][Full Text] [Related]
11. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Hao DC; Yang L; Xiao PG; Liu M Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792 [TBL] [Abstract][Full Text] [Related]
12. Degradome sequencing-based identification of phasiRNAs biogenesis pathways in Oryza sativa. Yu L; Guo R; Jiang Y; Ye X; Yang Z; Meng Y; Shao C BMC Genomics; 2021 Jan; 22(1):93. PubMed ID: 33516199 [TBL] [Abstract][Full Text] [Related]
13. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs. Hu H; Rashotte AM; Singh NK; Weaver DB; Goertzen LR; Singh SR; Locy RD PLoS One; 2015; 10(6):e0127468. PubMed ID: 26070200 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide identification of AGO18b-bound miRNAs and phasiRNAs in maize by cRIP-seq. Sun W; Chen D; Xue Y; Zhai L; Zhang D; Cao Z; Liu L; Cheng C; Zhang Y; Zhang Z BMC Genomics; 2019 Aug; 20(1):656. PubMed ID: 31419938 [TBL] [Abstract][Full Text] [Related]
15. A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber. Mao W; Li Z; Xia X; Li Y; Yu J PLoS One; 2012; 7(3):e33040. PubMed ID: 22479356 [TBL] [Abstract][Full Text] [Related]
16. High-throughput sequencing and degradome analysis reveal neutral evolution of Cercis gigantea microRNAs and their targets. Guo W; Zhang Y; Wang Q; Zhan Y; Zhu G; Yu Q; Zhu L Planta; 2016 Jan; 243(1):83-95. PubMed ID: 26342708 [TBL] [Abstract][Full Text] [Related]
17. High throughput deep degradome sequencing reveals microRNAs and their targets in response to drought stress in mulberry (Morus alba). Li R; Chen D; Wang T; Wan Y; Li R; Fang R; Wang Y; Hu F; Zhou H; Li L; Zhao W PLoS One; 2017; 12(2):e0172883. PubMed ID: 28235056 [TBL] [Abstract][Full Text] [Related]
18. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing. Paul S; Kundu A; Pal A J Integr Plant Biol; 2014 Jan; 56(1):15-23. PubMed ID: 24138283 [TBL] [Abstract][Full Text] [Related]
19. Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing. Liu H; Qin C; Chen Z; Zuo T; Yang X; Zhou H; Xu M; Cao S; Shen Y; Lin H; He X; Zhang Y; Li L; Ding H; Lübberstedt T; Zhang Z; Pan G BMC Genomics; 2014 Jan; 15():25. PubMed ID: 24422852 [TBL] [Abstract][Full Text] [Related]
20. Secondary siRNAs from Medicago NB-LRRs modulated via miRNA-target interactions and their abundances. Fei Q; Li P; Teng C; Meyers BC Plant J; 2015 Aug; 83(3):451-65. PubMed ID: 26042408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]