BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30999918)

  • 1. A concentric tube-based 4-DOF puncturing needle with a novel miniaturized actuation system for vitrectomy.
    Farooq MU; Xu B; Ko SY
    Biomed Eng Online; 2019 Apr; 18(1):46. PubMed ID: 30999918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible Needle Steering with Tethered and Untethered Actuation: Current States, Targeting Errors, Challenges and Opportunities.
    Lu M; Zhang Y; Lim CM; Ren H
    Ann Biomed Eng; 2023 May; 51(5):905-924. PubMed ID: 36943414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of patient-specific concentric tube robots using path planning from 3-D ultrasound.
    Morimoto TK; Cerrolaza JJ; Hsieh MH; Cleary K; Okamura AM; Linguraru MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():165-168. PubMed ID: 29059836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conceptual design of a miniaturized hybrid local actuator for Minimally Invasive Robotic Surgery (MIRS) instruments.
    Saedi S; Mirbagheri A; Farahmand F
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2140-3. PubMed ID: 22254761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A miniaturized vitrectomy system for vitreous and retinal biopsy.
    Peyman GA
    Can J Ophthalmol; 1990 Oct; 25(6):285-6. PubMed ID: 2249163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a multi-arm concentric-tube robot system for transnasal surgery.
    Wang J; Yang X; Li P; Song S; Liu L; Meng MQ
    Med Biol Eng Comput; 2020 Mar; 58(3):497-508. PubMed ID: 31900817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D image-guided robotic needle positioning system for small animal interventions.
    Bax JS; Waring CS; Sherebrin S; Stapleton S; Hudson TJ; Jaffray DA; Lacefield JC; Fenster A
    Med Phys; 2013 Jan; 40(1):011909. PubMed ID: 23298100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overcoming the Force Limitations of Magnetic Robotic Surgery: Magnetic Pulse Actuated Collisions for Tissue-Penetrating-Needle for Tetherless Interventions.
    Erin O; Liu X; Ge J; Opfermann J; Barnoy Y; Mair LO; Kang JU; Gensheimer W; Weinberg IN; Diaz-Mercado Y; Krieger A
    Adv Intell Syst; 2022 Jun; 4(6):. PubMed ID: 35967598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual remote center of motion control for needle placement robots.
    Boctor EM; Webster RJ; Mathieu H; Okamura AM; Fichtinger G
    Comput Aided Surg; 2004; 9(5):175-83. PubMed ID: 16192059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ultra-high field strength MR image-guided robotic needle delivery system for in-bore small animal interventions.
    Gravett M; Cepek J; Fenster A
    Med Phys; 2017 Nov; 44(11):5544-5555. PubMed ID: 28849592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biometry-based concentric tubes robot for vitreoretinal surgery.
    Lin FY; Bergeles C; Yang GZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5280-4. PubMed ID: 26737483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a compact continuum tubular robotic system for nasopharyngeal biopsy.
    Wu L; Song S; Wu K; Lim CM; Ren H
    Med Biol Eng Comput; 2017 Mar; 55(3):403-417. PubMed ID: 27230499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Master device for teleoperated needle insertion-type interventional robotic system.
    Woo HS; Cho JH; Kim CS; Lee HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4849-52. PubMed ID: 26737379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a Compact Actuation and Control System for Flexible Medical Robots.
    Morimoto TK; Hawkes EW; Okamura AM
    IEEE Robot Autom Lett; 2017 Jul; 2(3):1579-1585. PubMed ID: 28664187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surgical robot system for single-port surgery with novel joint mechanism.
    Shin WH; Kwon DS
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):937-44. PubMed ID: 23358948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developments and Control of Biocompatible Conducting Polymer for Intracorporeal Continuum Robots.
    Chikhaoui MT; Benouhiba A; Rougeot P; Rabenorosoa K; Ouisse M; Andreff N
    Ann Biomed Eng; 2018 Oct; 46(10):1511-1521. PubMed ID: 29713830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Precise application of Traditional Chinese Medicine in minimally-invasive techniques].
    Dong FH
    Zhongguo Gu Shang; 2018 Jun; 31(6):493-496. PubMed ID: 29945400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of multi-degrees-of-freedom dexterous modular arm instruments for minimally invasive surgery.
    Cepolina FE; Zoppi M
    Proc Inst Mech Eng H; 2012 Nov; 226(11):827-37. PubMed ID: 23185953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A robot for transnasal surgery featuring needle-sized tentacle-like arms.
    Gilbert H; Hendrick R; Remirez A; Webster R
    Expert Rev Med Devices; 2014 Jan; 11(1):5-7. PubMed ID: 24308740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-Automated Needle Steering in Biological Tissue Using an Ultrasound-Based Deflection Predictor.
    Khadem M; Rossa C; Usmani N; Sloboda RS; Tavakoli M
    Ann Biomed Eng; 2017 Apr; 45(4):924-938. PubMed ID: 27646146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.