These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 3100003)

  • 1. Bone modeling during growth: dynamic strain equilibrium in the chick tibiotarsus.
    Biewener AA; Swartz SM; Bertram JE
    Calcif Tissue Int; 1986 Dec; 39(6):390-5. PubMed ID: 3100003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal strain patterns in relation to exercise training during growth.
    Biewener AA; Bertram JE
    J Exp Biol; 1993 Dec; 185():51-69. PubMed ID: 8294852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a bone's in vivo 24-hour loading history for physical exercise compared with background loading.
    Konieczynski DD; Truty MJ; Biewener AA
    J Orthop Res; 1998 Jan; 16(1):29-37. PubMed ID: 9565070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of dyschondroplasia on the rate of bone growth in the fowl.
    Thorp BH
    Res Vet Sci; 1988 Jul; 45(1):78-82. PubMed ID: 3222557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ossification centers in the lower end of tibiotarsus in domestic fowl.
    Navagiri SS; Dubey PN
    Z Mikrosk Anat Forsch; 1976; 90(2):360-7. PubMed ID: 1023559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does the mechanical milieu associated with high-speed running lead to adaptive changes in diaphyseal growing bone?
    Judex S; Zernicke RF
    Bone; 2000 Feb; 26(2):153-9. PubMed ID: 10678410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific.
    Wallace JM; Rajachar RM; Allen MR; Bloomfield SA; Robey PG; Young MF; Kohn DH
    Bone; 2007 Apr; 40(4):1120-7. PubMed ID: 17240210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological and biochemical effects of strenuous exercise on immature long bones.
    Maynard JA; Pedrini-Mille A; Pedrini VA; Vailas AC
    Iowa Orthop J; 1995; 15():162-7. PubMed ID: 7634027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of bone stress and strain in the immature and mature rat femur.
    Keller TS; Spengler DM
    J Biomech; 1989; 22(11-12):1115-27. PubMed ID: 2625411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between the rate of longitudinal bone growth and physeal thickness in the growing fowl.
    Thorp BH
    Res Vet Sci; 1988 Jul; 45(1):83-5. PubMed ID: 3222558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-impact exercise and growing bone: relation between high strain rates and enhanced bone formation.
    Judex S; Zernicke RF
    J Appl Physiol (1985); 2000 Jun; 88(6):2183-91. PubMed ID: 10846034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of exercise on the vascular pattern in the bone extremities of broiler fowl.
    Thorp BH; Duff SR
    Res Vet Sci; 1988 Jul; 45(1):72-7. PubMed ID: 3222556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone's early responses to mechanical loading differ in distinct genetic strains of chick: selection for enhanced growth reduces skeletal adaptability.
    Pitsillides AA; Rawlinson SC; Mosley JR; Lanyon LE
    J Bone Miner Res; 1999 Jun; 14(6):980-7. PubMed ID: 10352107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural response of growing bone to exercise and disuse.
    Biewener AA; Bertram JE
    J Appl Physiol (1985); 1994 Feb; 76(2):946-55. PubMed ID: 8175610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental tests of planar strain theory for predicting bone cross-sectional longitudinal and shear strains.
    Verner KA; Lehner M; Lamas LP; Main RP
    J Exp Biol; 2016 Oct; 219(Pt 19):3082-3090. PubMed ID: 27471276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic selection for fast growth generates bone architecture characterised by enhanced periosteal expansion and limited consolidation of the cortices but a diminution in the early responses to mechanical loading.
    Rawlinson SC; Murray DH; Mosley JR; Wright CD; Bredl JC; Saxon LK; Loveridge N; Leterrier C; Constantin P; Farquharson C; Pitsillides AA
    Bone; 2009 Aug; 45(2):357-66. PubMed ID: 19409517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the pathogenesis of tibial dyschondroplasia in chickens. II. Growth rate of long bones.
    Riddell C
    Avian Dis; 1975; 19(3):490-6. PubMed ID: 1164316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic morphometry, microcomputed tomography and mechanical evaluation of the tibiotarsal bone of a dual-purpose and a broiler chicken line.
    Harash G; Richardson KC; Alshamy Z; Hünigen H; Hafez HM; Plendl J; Al Masri S
    PLoS One; 2020; 15(3):e0230070. PubMed ID: 32160230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breed and loading history influence in vivo skeletal strain patterns in pre-pubertal female chickens.
    Vitienes I; Mikolajewicz N; Hosseinitabatabaei S; Bouchard A; Julien C; Graceffa G; Rentsch A; Widowski T; Main RP; Willie BM
    Bone; 2023 Aug; 173():116785. PubMed ID: 37146896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton.
    Judex S; Gross TS; Zernicke RF
    J Bone Miner Res; 1997 Oct; 12(10):1737-45. PubMed ID: 9333136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.