These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 31000156)
1. Site-Specific Peptide Probes Detect Buried Water in a Lipid Membrane. Flanagan JC; Baiz CR Biophys J; 2019 May; 116(9):1692-1700. PubMed ID: 31000156 [TBL] [Abstract][Full Text] [Related]
2. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane. Rajapaksha SP; Pal N; Zheng D; Lu HP Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735 [TBL] [Abstract][Full Text] [Related]
3. Influence of High pH and Cholesterol on Single Arginine-Containing Transmembrane Peptide Helices. Thibado JK; Martfeld AN; Greathouse DV; Koeppe RE Biochemistry; 2016 Nov; 55(45):6337-6343. PubMed ID: 27782382 [TBL] [Abstract][Full Text] [Related]
4. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins. Avbelj F J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873 [TBL] [Abstract][Full Text] [Related]
5. Designing transmembrane alpha-helices that insert spontaneously. Wimley WC; White SH Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993 [TBL] [Abstract][Full Text] [Related]
6. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylcholine bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2002 Jul; 41(29):9197-207. PubMed ID: 12119034 [TBL] [Abstract][Full Text] [Related]
7. Insights into membrane translocation of the cell-penetrating peptide pVEC from molecular dynamics calculations. Alaybeyoglu B; Sariyar Akbulut B; Ozkirimli E J Biomol Struct Dyn; 2016 Nov; 34(11):2387-98. PubMed ID: 26569019 [TBL] [Abstract][Full Text] [Related]
8. Glutamine Side Chain Wu H; Saltzberg DJ; Kratochvil HT; Jo H; Sali A; DeGrado WF J Am Chem Soc; 2019 May; 141(18):7320-7326. PubMed ID: 30998340 [TBL] [Abstract][Full Text] [Related]
9. [Modeling of peptides and proteins in membrane environment. I. A solvation model mimicking a lipid bilayer]. Nol'de DE; Volynskiĭ PE; Arsen'ev AS; Efremov RG Bioorg Khim; 2000 Feb; 26(2):130-40. PubMed ID: 10808409 [TBL] [Abstract][Full Text] [Related]
10. Adaptation of a membrane-active peptide to heterogeneous environment. I. Structural plasticity of the peptide. Polyansky AA; Volynsky PE; Arseniev AS; Efremov RG J Phys Chem B; 2009 Jan; 113(4):1107-19. PubMed ID: 19125640 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulations of the interactions of kinin peptides with an anionic POPG bilayer. Manna M; Mukhopadhyay C Langmuir; 2011 Apr; 27(7):3713-22. PubMed ID: 21355573 [TBL] [Abstract][Full Text] [Related]
12. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes. Saleh MT; Ferguson J; Boggs JM; Gariépy J Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710 [TBL] [Abstract][Full Text] [Related]
13. The importance of membrane defects-lessons from simulations. Bennett WF; Tieleman DP Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900 [TBL] [Abstract][Full Text] [Related]