These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31000156)

  • 21. Molecular dynamics simulations of a calmodulin-peptide complex in solution.
    Yang C; Kuczera K
    J Biomol Struct Dyn; 2002 Oct; 20(2):179-97. PubMed ID: 12354070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides.
    Velasco-Bolom JL; Corzo G; Garduño-Juárez R
    J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of structure-lipid bilayer permeability relationships for peptide-like small organic molecules.
    Cao Y; Xiang TX; Anderson BD
    Mol Pharm; 2008; 5(3):371-88. PubMed ID: 18355031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Folding and membrane insertion of amyloid-beta (25-35) peptide and its mutants: implications for aggregation and neurotoxicity.
    Tsai HH; Lee JB; Tseng SS; Pan XA; Shih YC
    Proteins; 2010 Jun; 78(8):1909-25. PubMed ID: 20229606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein.
    Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC
    Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions of tyrosine in Leu-enkephalin at a membrane-water interface: an ultrafast two-dimensional infrared study combined with density functional calculations and molecular dynamics simulations.
    Sul S; Feng Y; Le U; Tobias DJ; Ge NH
    J Phys Chem B; 2010 Jan; 114(2):1180-90. PubMed ID: 20017523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterizing the Molecular Mechanisms for Flipping Charged Peptide Flanking Loops across a Lipid Bilayer.
    Patel SJ; Van Lehn RC
    J Phys Chem B; 2018 Nov; 122(45):10337-10348. PubMed ID: 30376710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of polar and/or ionizable residues in the core and flanking regions of hydrophobic helices on transmembrane conformation and oligomerization.
    Lew S; Ren J; London E
    Biochemistry; 2000 Aug; 39(32):9632-40. PubMed ID: 10933779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformational equilibria of terminally blocked single amino acids at the water-hexane interface. A molecular dynamics study.
    Chipot C; Pohorille A
    J Phys Chem B; 1998 Jan; 102(1):281-90. PubMed ID: 11541119
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and characterization of anchoring amphiphilic peptides and their interactions with lipid vesicles.
    Percot A; Zhu XX; Lafleur M
    Biopolymers; 1999 Nov; 50(6):647-55. PubMed ID: 10508967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions.
    Ladokhin AS; White SH
    J Mol Biol; 2001 Jun; 309(3):543-52. PubMed ID: 11397078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How transmembrane peptides insert and orientate in biomembranes: a combined experimental and simulation study.
    Yue T; Sun M; Zhang S; Ren H; Ge B; Huang F
    Phys Chem Chem Phys; 2016 Jun; 18(26):17483-94. PubMed ID: 27302083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of the hydrophobicity gradient of an amphipathic peptide to its mode of association with lipids.
    Pérez-Méndez O; Vanloo B; Decout A; Goethals M; Peelman F; Vandekerckhove J; Brasseur R; Rosseneu M
    Eur J Biochem; 1998 Sep; 256(3):570-9. PubMed ID: 9780233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deciphering a mechanism of membrane permeabilization by α-hordothionin peptide.
    Oard SV
    Biochim Biophys Acta; 2011 Jun; 1808(6):1737-45. PubMed ID: 21315063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transmembrane peptides from tyrosine kinase receptor. Mutation-related behavior in a lipid bilayer investigated by molecular dynamics simulations.
    Samna Soumana O; Aller P; Garnier N; Genest M
    J Biomol Struct Dyn; 2005 Aug; 23(1):91-100. PubMed ID: 15918680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissecting the stability of a beta-hairpin peptide that folds in water: NMR and molecular dynamics analysis of the beta-turn and beta-strand contributions to folding.
    Griffiths-Jones SR; Maynard AJ; Searle MS
    J Mol Biol; 1999 Oct; 292(5):1051-69. PubMed ID: 10512702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast helix formation in the B domain of protein A revealed by site-specific infrared probes.
    Davis CM; Cooper AK; Dyer RB
    Biochemistry; 2015 Mar; 54(9):1758-66. PubMed ID: 25706439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational structure, dynamics, and solvation energies of small alanine peptides in water and carbon tetrachloride.
    Xiang TX; Anderson BD
    J Pharm Sci; 2006 Jun; 95(6):1269-87. PubMed ID: 16625657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length.
    Ren J; Lew S; Wang J; London E
    Biochemistry; 1999 May; 38(18):5905-12. PubMed ID: 10231543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta.
    Kessel A; Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3431-44. PubMed ID: 14645040
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.