These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31000164)

  • 81. Characterization of the First Fungal Glycosyl Hydrolase Family 19 Chitinase (NbchiA) from Nosema bombycis (Nb).
    Han B; Zhou K; Li Z; Sun B; Ni Q; Meng X; Pan G; Li C; Long M; Li T; Zhou C; Li W; Zhou Z
    J Eukaryot Microbiol; 2016; 63(1):37-45. PubMed ID: 26108336
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Escherichia coli can produce recombinant chitinase in the soil to control the pathogenesis by Fusarium oxysporum without colonization.
    Chung S; Kim SD
    J Microbiol Biotechnol; 2007 Mar; 17(3):474-80. PubMed ID: 18050952
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment.
    Radovanović N; Milutinović M; Mihajlovski K; Jović J; Nastasijević B; Rajilić-Stojanović M; Dimitrijević-Branković S
    Microb Pathog; 2018 Jul; 120():71-78. PubMed ID: 29709685
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Chitinase from the Latex of
    Mota HRO; Oliveira JTA; Martins TF; Vasconcelos IM; Costa HPS; Neres DP; Silva FDA; Souza PFN
    Protein Pept Lett; 2022; 29(10):869-881. PubMed ID: 36056827
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli.
    Kirubakaran SI; Sakthivel N
    Protein Expr Purif; 2007 Mar; 52(1):159-66. PubMed ID: 17029984
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Effect of plant growth regulators on in vitro biological control of Fusarium oxysporum by Trichoderma harzianum (T8).
    Badri M; Zamani MR; Motallebi M
    Pak J Biol Sci; 2007 Sep; 10(17):2850-5. PubMed ID: 19090187
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Comparative characterization of chitinases from silkworm (Bombyx mori) and bollworm (Helicoverpa armigera).
    Zhang H; Liu M; Tian Y; Hu X
    Cell Biochem Biophys; 2011 Nov; 61(2):267-75. PubMed ID: 21573993
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Antifungal activity and expression patterns of extracellular chitinase and β-1,3-glucanase in Wickerhamomyces anomalus EG2 treated with chitin and glucan.
    Hong SH; Song YS; Seo DJ; Kim KY; Jung WJ
    Microb Pathog; 2017 Sep; 110():159-164. PubMed ID: 28668604
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Crystal Structure of Chitinase ChiW from Paenibacillus sp. str. FPU-7 Reveals a Novel Type of Bacterial Cell-Surface-Expressed Multi-Modular Enzyme Machinery.
    Itoh T; Hibi T; Suzuki F; Sugimoto I; Fujiwara A; Inaka K; Tanaka H; Ohta K; Fujii Y; Taketo A; Kimoto H
    PLoS One; 2016; 11(12):e0167310. PubMed ID: 27907169
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Enzymatic properties of a GH19 chitinase isolated from rice lacking a major loop structure involved in chitin binding.
    Tanaka J; Fukamizo T; Ohnuma T
    Glycobiology; 2017 May; 27(5):477-485. PubMed ID: 28204489
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Antifungal activity of chitinases from Trichoderma aureoviride DY-59 and Rhizopus microsporus VS-9.
    Nguyen NV; Kim YJ; Oh KT; Jung WJ; Park RD
    Curr Microbiol; 2008 Jan; 56(1):28-32. PubMed ID: 17896135
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Comparison of in vitro Antifungal Activity Methods Using Extract of Chitinase-producing Aeromonas sp. BHC02.
    Cadirci BH; Yilmaz G
    Protein J; 2023 Apr; 42(2):125-134. PubMed ID: 36892743
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Analysis of the hyperthermophilic chitinase from Pyrococcus furiosus: activity toward crystalline chitin.
    Oku T; Ishikawa K
    Biosci Biotechnol Biochem; 2006 Jul; 70(7):1696-701. PubMed ID: 16861805
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A novel chitin-binding protein from Moringa oleifera seed with potential for plant disease control.
    Gifoni JM; Oliveira JT; Oliveira HD; Batista AB; Pereira ML; Gomes AS; Oliveira HP; Grangeiro TB; Vasconcelos IM
    Biopolymers; 2012; 98(4):406-15. PubMed ID: 23193603
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The C-terminal module of Chi1 from Aeromonas caviae CB101 has a function in substrate binding and hydrolysis.
    Wang FP; Li Q; Zhou Y; Li MG; Xiao X
    Proteins; 2003 Dec; 53(4):908-16. PubMed ID: 14635132
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Antifungal proteins from plants. Purification, molecular cloning, and antifungal properties of chitinases from maize seed.
    Huynh QK; Hironaka CM; Levine EB; Smith CE; Borgmeyer JR; Shah DM
    J Biol Chem; 1992 Apr; 267(10):6635-40. PubMed ID: 1551872
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Biochemical characterization of a bifunctional chitinase/lysozyme from Streptomyces sampsonii suitable for N-acetyl chitobiose production.
    Zhang W; Liu Y; Ma J; Yan Q; Jiang Z; Yang S
    Biotechnol Lett; 2020 Aug; 42(8):1489-1499. PubMed ID: 32170432
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Identification and molecular characterization of a chitinase from the hard tick Haemaphysalis longicornis.
    You M; Xuan X; Tsuji N; Kamio T; Taylor D; Suzuki N; Fujisaki K
    J Biol Chem; 2003 Mar; 278(10):8556-63. PubMed ID: 12502707
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Marine Bacillus haynesii chitinase: Purification, characterization and antifungal potential for sustainable chitin bioconversion.
    Govindaraj V; Kim SK; Raval R; Raval K
    Carbohydr Res; 2024 Jul; 541():109170. PubMed ID: 38830279
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Streptomyces plicatus as a model biocontrol agent.
    Abd-Allah EF
    Folia Microbiol (Praha); 2001; 46(4):309-14. PubMed ID: 11830942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.