These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 31000257)
1. Water-in-oil organogel based emulsions as a tool for increasing bioaccessibility and cell permeability of poorly water-soluble nutraceuticals. Ojeda-Serna IE; Rocha-Guzmán NE; Gallegos-Infante JA; Cháirez-Ramírez MH; Rosas-Flores W; Pérez-Martínez JD; Moreno-Jiménez MR; González-Laredo RF Food Res Int; 2019 Jun; 120():415-424. PubMed ID: 31000257 [TBL] [Abstract][Full Text] [Related]
2. Encapsulation of lipophilic polyphenols in plant-based nanoemulsions: impact of carrier oil on lipid digestion and curcumin, resveratrol and quercetin bioaccessibility. Zhou H; Zheng B; McClements DJ Food Funct; 2021 Apr; 12(8):3420-3432. PubMed ID: 33900331 [TBL] [Abstract][Full Text] [Related]
3. Emulsification of algal oil with soy lecithin improved DHA bioaccessibility but did not change overall in vitro digestibility. Lin X; Wang Q; Li W; Wright AJ Food Funct; 2014 Nov; 5(11):2913-21. PubMed ID: 25208938 [TBL] [Abstract][Full Text] [Related]
4. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. Yu H; Huang Q J Agric Food Chem; 2012 May; 60(21):5373-9. PubMed ID: 22506728 [TBL] [Abstract][Full Text] [Related]
5. Development of organogel-based emulsions to enhance the loading and bioaccessibility of 5-demethylnobiletin. Zhang M; Pan Y; Dong Q; Tang X; Xin Y; Yin B; Zhu J; Kou X; Ho CT; Huang Q Food Res Int; 2021 Oct; 148():110592. PubMed ID: 34507737 [TBL] [Abstract][Full Text] [Related]
6. Potential of Excipient Emulsions for Improving Quercetin Bioaccessibility and Antioxidant Activity: An in Vitro Study. Chen X; Zou L; Liu W; McClements DJ J Agric Food Chem; 2016 May; 64(18):3653-60. PubMed ID: 27136205 [TBL] [Abstract][Full Text] [Related]
7. Gastrointestinal Fate of Fluid and Gelled Nutraceutical Emulsions: Impact on Proteolysis, Lipolysis, and Quercetin Bioaccessibility. Chen X; McClements DJ; Zhu Y; Zou L; Li Z; Liu W; Cheng C; Gao H; Liu C J Agric Food Chem; 2018 Aug; 66(34):9087-9096. PubMed ID: 30102529 [TBL] [Abstract][Full Text] [Related]
8. Encapsulation of curcumin within oil-in-water emulsions prepared by premix membrane emulsification: Impact of droplet size and carrier oil type on physicochemical stability and in vitro bioaccessibility. Jiang T; Charcosset C Food Chem; 2022 May; 375():131825. PubMed ID: 34936971 [TBL] [Abstract][Full Text] [Related]
10. Soybean lecithin-stabilized oil-in-water (O/W) emulsions increase the stability and in vitro bioaccessibility of bioactive nutrients. Yang QQ; Sui Z; Lu W; Corke H Food Chem; 2021 Feb; 338():128071. PubMed ID: 33092005 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of the solubility, stability and bioaccessibility of quercetin using protein-based excipient emulsions. Chen X; McClements DJ; Zhu Y; Chen Y; Zou L; Liu W; Cheng C; Fu D; Liu C Food Res Int; 2018 Dec; 114():30-37. PubMed ID: 30361024 [TBL] [Abstract][Full Text] [Related]
12. Utilizing food matrix effects to enhance nutraceutical bioavailability: increase of curcumin bioaccessibility using excipient emulsions. Zou L; Liu W; Liu C; Xiao H; McClements DJ J Agric Food Chem; 2015 Feb; 63(7):2052-62. PubMed ID: 25639191 [TBL] [Abstract][Full Text] [Related]
13. DHA rich algae oil delivered by O/W or gelled emulsions: strategies to increase its bioaccessibility. Gayoso L; Ansorena D; Astiasarán I J Sci Food Agric; 2019 Mar; 99(5):2251-2258. PubMed ID: 30324696 [TBL] [Abstract][Full Text] [Related]
14. Assessment of dynamic bioaccessibility of curcumin encapsulated in milled starch particle stabilized Pickering emulsions using TNO's gastrointestinal model. Lu X; Zhu J; Pan Y; Huang Q Food Funct; 2019 May; 10(5):2583-2594. PubMed ID: 31011719 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of phytochemical bioaccessibility from plant-based foods using excipient emulsions: impact of lipid type on carotenoid solubilization from spinach. Yuan X; Liu X; McClements DJ; Cao Y; Xiao H Food Funct; 2018 Aug; 9(8):4352-4365. PubMed ID: 30043000 [TBL] [Abstract][Full Text] [Related]
16. Development of Low-calorie Organogel fromsn-2 Position-modified Coconut Oil Rich in Polyunsaturated Fatty Acids. Jiang Z; Gao W; Du X; Zhang F; Bai X J Oleo Sci; 2019; 68(5):399-408. PubMed ID: 31061263 [TBL] [Abstract][Full Text] [Related]
17. Using Canola Oil Organogels as Fat Replacement in Liver Pâté. Barbut S; Marangoni AG; Thode U; Tiensa BE J Food Sci; 2019 Sep; 84(9):2646-2651. PubMed ID: 31429478 [TBL] [Abstract][Full Text] [Related]
18. Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Aditya NP; Aditya S; Yang H; Kim HW; Park SO; Ko S Food Chem; 2015 Apr; 173():7-13. PubMed ID: 25465989 [TBL] [Abstract][Full Text] [Related]
19. Bioavailability of quercetin in zein-based colloidal particles-stabilized Pickering emulsions investigated by the in vitro digestion coupled with Caco-2 cell monolayer model. Ma JJ; Huang XN; Yin SW; Yu YG; Yang XQ Food Chem; 2021 Oct; 360():130152. PubMed ID: 34034052 [TBL] [Abstract][Full Text] [Related]
20. Formulating orange oil-in-water beverage emulsions for effective delivery of bioactives: Improvements in chemical stability, antioxidant activity and gastrointestinal fate of lycopene using carrier oils. Meroni E; Raikos V Food Res Int; 2018 Apr; 106():439-445. PubMed ID: 29579945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]