BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31000418)

  • 1. Assessment of epigenetic mechanisms and DNA double-strand break repair using laser micro-irradiation technique developed for hematological cells.
    Johnson DP; Spitz-Becker GS; Chakraborti K; Bhaskara S
    EBioMedicine; 2019 May; 43():138-149. PubMed ID: 31000418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The histone methyltransferase DOT1L is required for proper DNA damage response, DNA repair, and modulates chemotherapy responsiveness.
    Kari V; Raul SK; Henck JM; Kitz J; Kramer F; Kosinsky RL; Übelmesser N; Mansour WY; Eggert J; Spitzner M; Najafova Z; Bastians H; Grade M; Gaedcke J; Wegwitz F; Johnsen SA
    Clin Epigenetics; 2019 Jan; 11(1):4. PubMed ID: 30616689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Laser Micro-irradiation for Examination of Single and Double Strand Break Repair in Mammalian Cells.
    Holton NW; Andrews JF; Gassman NR
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28930988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining the Role of HDACs in DNA Double-Strand Break Repair in Neurons.
    Pao PC; Penney J; Tsai LH
    Methods Mol Biol; 2019; 1983():225-234. PubMed ID: 31087301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo formation of gamma-H2AX and 53BP1 DNA repair foci in blood cells after radioiodine therapy of differentiated thyroid cancer.
    Lassmann M; Hänscheid H; Gassen D; Biko J; Meineke V; Reiners C; Scherthan H
    J Nucl Med; 2010 Aug; 51(8):1318-25. PubMed ID: 20660387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timely double-strand break repair and pathway choice in pericentromeric heterochromatin depend on the histone demethylase dKDM4A.
    Janssen A; Colmenares SU; Lee T; Karpen GH
    Genes Dev; 2019 Jan; 33(1-2):103-115. PubMed ID: 30578303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin modification and NBS1: their relationship in DNA double-strand break repair.
    Saito Y; Zhou H; Kobayashi J
    Genes Genet Syst; 2016; 90(4):195-208. PubMed ID: 26616756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin organization and dynamics in double-strand break repair.
    Seeber A; Gasser SM
    Curr Opin Genet Dev; 2017 Apr; 43():9-16. PubMed ID: 27810555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of elimination of phosphorylated histone H2AX from chromatin after repair of DNA double-strand breaks.
    Svetlova MP; Solovjeva LV; Tomilin NV
    Mutat Res; 2010 Mar; 685(1-2):54-60. PubMed ID: 19682466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-strand breaks and the concept of short- and long-term epigenetic memory.
    Orlowski C; Mah LJ; Vasireddy RS; El-Osta A; Karagiannis TC
    Chromosoma; 2011 Apr; 120(2):129-49. PubMed ID: 21174214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tails of histones in DNA double-strand break repair.
    Bilsland E; Downs JA
    Mutagenesis; 2005 May; 20(3):153-63. PubMed ID: 15843385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic modifications in double-strand break DNA damage signaling and repair.
    Rossetto D; Truman AW; Kron SJ; Côté J
    Clin Cancer Res; 2010 Sep; 16(18):4543-52. PubMed ID: 20823147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-strand break-induced transcriptional silencing is associated with loss of tri-methylation at H3K4.
    Seiler DM; Rouquette J; Schmid VJ; Strickfaden H; Ottmann C; Drexler GA; Mazurek B; Greubel C; Hable V; Dollinger G; Cremer T; Friedl AA
    Chromosome Res; 2011 Oct; 19(7):883-99. PubMed ID: 21987186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between histone posttranslational modification and DNA damage signaling and repair.
    Sharma AK; Hendzel MJ
    Int J Radiat Biol; 2019 Apr; 95(4):382-393. PubMed ID: 30252564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HDAC1,2 inhibition and doxorubicin impair Mre11-dependent DNA repair and DISC to override BCR-ABL1-driven DSB repair in Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukemia.
    Tharkar-Promod S; Johnson DP; Bennett SE; Dennis EM; Banowsky BG; Jones SS; Shearstone JR; Quayle SN; Min C; Jarpe M; Mosbruger T; Pomicter AD; Miles RR; Chen WY; Bhalla KN; Zweidler-McKay PA; Shrieve DC; Deininger MW; Chandrasekharan MB; Bhaskara S
    Leukemia; 2018 Jan; 32(1):49-60. PubMed ID: 28579617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HDAC1,2 inhibition impairs EZH2- and BBAP-mediated DNA repair to overcome chemoresistance in EZH2 gain-of-function mutant diffuse large B-cell lymphoma.
    Johnson DP; Spitz GS; Tharkar S; Quayle SN; Shearstone JR; Jones S; McDowell ME; Wellman H; Tyler JK; Cairns BR; Chandrasekharan MB; Bhaskara S
    Oncotarget; 2015 Mar; 6(7):4863-87. PubMed ID: 25605023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin structure in double strand break repair.
    Gospodinov A; Herceg Z
    DNA Repair (Amst); 2013 Oct; 12(10):800-10. PubMed ID: 23919923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin structure and DNA double-strand break responses in cancer progression and therapy.
    Downs JA
    Oncogene; 2007 Dec; 26(56):7765-72. PubMed ID: 18066089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gamma-irradiated quiescent cells repair directly induced double-strand breaks but accumulate persistent double-strand breaks during subsequent DNA replication.
    Minakawa Y; Atsumi Y; Shinohara A; Murakami Y; Yoshioka K
    Genes Cells; 2016 Jul; 21(7):789-97. PubMed ID: 27251002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae.
    Tsukuda T; Fleming AB; Nickoloff JA; Osley MA
    Nature; 2005 Nov; 438(7066):379-83. PubMed ID: 16292314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.