These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 31000746)
1. Abiotic and biotic stresses induce a core transcriptome response in rice. Cohen SP; Leach JE Sci Rep; 2019 Apr; 9(1):6273. PubMed ID: 31000746 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome analysis uncovers Arabidopsis F-BOX STRESS INDUCED 1 as a regulator of jasmonic acid and abscisic acid stress gene expression. Gonzalez LE; Keller K; Chan KX; Gessel MM; Thines BC BMC Genomics; 2017 Jul; 18(1):533. PubMed ID: 28716048 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide alternative polyadenylation dynamics in response to biotic and abiotic stresses in rice. Ye C; Zhou Q; Wu X; Ji G; Li QQ Ecotoxicol Environ Saf; 2019 Nov; 183():109485. PubMed ID: 31376807 [TBL] [Abstract][Full Text] [Related]
4. A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Hashimoto M; Kisseleva L; Sawa S; Furukawa T; Komatsu S; Koshiba T Plant Cell Physiol; 2004 May; 45(5):550-9. PubMed ID: 15169937 [TBL] [Abstract][Full Text] [Related]
5. Molecular dissection of the response of a rice leucine-rich repeat receptor-like kinase (LRR-RLK) gene to abiotic stresses. Park S; Moon JC; Park YC; Kim JH; Kim DS; Jang CS J Plant Physiol; 2014 Nov; 171(17):1645-53. PubMed ID: 25173451 [TBL] [Abstract][Full Text] [Related]
6. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa). Nguyen Dinh S; Sai TZT; Nawaz G; Lee K; Kang H J Plant Physiol; 2016 Aug; 201():85-94. PubMed ID: 27448724 [TBL] [Abstract][Full Text] [Related]
7. An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice. Zhang Y; Li J; Chen S; Ma X; Wei H; Chen C; Gao N; Zou Y; Kong D; Li T; Liu Z; Yu S; Luo L Mol Genet Genomics; 2020 Jul; 295(4):941-956. PubMed ID: 32350607 [TBL] [Abstract][Full Text] [Related]
8. OsbZIP81, A Homologue of Arabidopsis VIP1, May Positively Regulate JA Levels by Directly Targetting the Genes in JA Signaling and Metabolism Pathway in Rice. Liu D; Shi S; Hao Z; Xiong W; Luo M Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31086007 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of an AP2/ERF Type Transcription Factor OsEREBP1 Confers Biotic and Abiotic Stress Tolerance in Rice. Jisha V; Dampanaboina L; Vadassery J; Mithöfer A; Kappara S; Ramanan R PLoS One; 2015; 10(6):e0127831. PubMed ID: 26035591 [TBL] [Abstract][Full Text] [Related]
10. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana. Safi H; Saibi W; Alaoui MM; Hmyene A; Masmoudi K; Hanin M; Brini F Plant Physiol Biochem; 2015 Apr; 89():64-75. PubMed ID: 25703105 [TBL] [Abstract][Full Text] [Related]
11. Stress Tolerance Profiling of a Collection of Extant Salt-Tolerant Rice Varieties and Transgenic Plants Overexpressing Abiotic Stress Tolerance Genes. Kurotani K; Yamanaka K; Toda Y; Ogawa D; Tanaka M; Kozawa H; Nakamura H; Hakata M; Ichikawa H; Hattori T; Takeda S Plant Cell Physiol; 2015 Oct; 56(10):1867-76. PubMed ID: 26329877 [TBL] [Abstract][Full Text] [Related]
12. Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. Weng X; Wang L; Wang J; Hu Y; Du H; Xu C; Xing Y; Li X; Xiao J; Zhang Q Plant Physiol; 2014 Feb; 164(2):735-47. PubMed ID: 24390391 [TBL] [Abstract][Full Text] [Related]
14. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Seo JS; Joo J; Kim MJ; Kim YK; Nahm BH; Song SI; Cheong JJ; Lee JS; Kim JK; Choi YD Plant J; 2011 Mar; 65(6):907-21. PubMed ID: 21332845 [TBL] [Abstract][Full Text] [Related]
15. Molecular Dissection of the Gene Wang Y; Du F; Wang J; Li Y; Zhang Y; Zhao X; Zheng T; Li Z; Xu J; Wang W; Fu B Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502018 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Shankar R; Bhattacharjee A; Jain M Sci Rep; 2016 Mar; 6():23719. PubMed ID: 27029818 [TBL] [Abstract][Full Text] [Related]
17. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. Huang L; Hong Y; Zhang H; Li D; Song F BMC Plant Biol; 2016 Sep; 16(1):203. PubMed ID: 27646344 [TBL] [Abstract][Full Text] [Related]
18. Effect of ABA Pre-Treatment on Rice Plant Transcriptome Response to Multiple Abiotic Stress. Habibpourmehraban F; Masoomi-Aladizgeh F; Haynes PA Biomolecules; 2023 Oct; 13(10):. PubMed ID: 37892236 [TBL] [Abstract][Full Text] [Related]
19. OsSIDP366, a DUF1644 gene, positively regulates responses to drought and salt stresses in rice. Guo C; Luo C; Guo L; Li M; Guo X; Zhang Y; Wang L; Chen L J Integr Plant Biol; 2016 May; 58(5):492-502. PubMed ID: 26172270 [TBL] [Abstract][Full Text] [Related]
20. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Ambavaram MM; Basu S; Krishnan A; Ramegowda V; Batlang U; Rahman L; Baisakh N; Pereira A Nat Commun; 2014 Oct; 5():5302. PubMed ID: 25358745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]