These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 31001135)
1. Extended Bidomain Modeling of Defibrillation: Quantifying Virtual Electrode Strengths in Fibrotic Myocardium. Bragard J; Sankarankutty AC; Sachse FB Front Physiol; 2019; 10():337. PubMed ID: 31001135 [TBL] [Abstract][Full Text] [Related]
2. Confocal Microscopy-Based Estimation of Parameters for Computational Modeling of Electrical Conduction in the Normal and Infarcted Heart. Greiner J; Sankarankutty AC; Seemann G; Seidel T; Sachse FB Front Physiol; 2018; 9():239. PubMed ID: 29670532 [TBL] [Abstract][Full Text] [Related]
3. Bidomain Predictions of Virtual Electrode-Induced Make and Break Excitations around Blood Vessels. Connolly AJ; Vigmond E; Bishop MJ Front Bioeng Biotechnol; 2017; 5():18. PubMed ID: 28396856 [TBL] [Abstract][Full Text] [Related]
4. A model of electrical conduction in cardiac tissue including fibroblasts. Sachse FB; Moreno AP; Seemann G; Abildskov JA Ann Biomed Eng; 2009 May; 37(5):874-89. PubMed ID: 19283480 [TBL] [Abstract][Full Text] [Related]
5. Virtual electrode effects in transvenous defibrillation-modulation by structure and interface: evidence from bidomain simulations and optical mapping. Entcheva E; Eason J; Efimov IR; Cheng Y; Malkin R; Claydon F J Cardiovasc Electrophysiol; 1998 Sep; 9(9):949-61. PubMed ID: 9786075 [TBL] [Abstract][Full Text] [Related]
6. Assessing the arrhythmogenic risk of engineered heart tissue patches through in silico application on infarcted ventricle models. Fassina D; M Costa C; Bishop M; Plank G; Whitaker J; Harding SE; Niederer SA Comput Biol Med; 2023 Mar; 154():106550. PubMed ID: 36701966 [TBL] [Abstract][Full Text] [Related]
7. Modelling the interaction between stem cells derived cardiomyocytes patches and host myocardium to aid non-arrhythmic engineered heart tissue design. Fassina D; Costa CM; Longobardi S; Karabelas E; Plank G; Harding SE; Niederer SA PLoS Comput Biol; 2022 Apr; 18(4):e1010030. PubMed ID: 35363778 [TBL] [Abstract][Full Text] [Related]
8. Virtual electrode polarization in the far field: implications for external defibrillation. Efimov IR; Aguel F; Cheng Y; Wollenzier B; Trayanova N Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H1055-70. PubMed ID: 10993768 [TBL] [Abstract][Full Text] [Related]
9. Virtual electrodes around anatomical structures and their roles in defibrillation. Connolly A; Vigmond E; Bishop M PLoS One; 2017; 12(3):e0173324. PubMed ID: 28253365 [TBL] [Abstract][Full Text] [Related]
10. Direct evidence of the role of virtual electrode-induced phase singularity in success and failure of defibrillation. Efimov IR; Cheng Y; Yamanouchi Y; Tchou PJ J Cardiovasc Electrophysiol; 2000 Aug; 11(8):861-8. PubMed ID: 10969748 [TBL] [Abstract][Full Text] [Related]
11. Slow Conduction in the Border Zones of Patchy Fibrosis Stabilizes the Drivers for Atrial Fibrillation: Insights from Multi-Scale Human Atrial Modeling. Morgan R; Colman MA; Chubb H; Seemann G; Aslanidi OV Front Physiol; 2016; 7():474. PubMed ID: 27826248 [No Abstract] [Full Text] [Related]
12. Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study. Xie Y; Garfinkel A; Camelliti P; Kohl P; Weiss JN; Qu Z Heart Rhythm; 2009 Nov; 6(11):1641-9. PubMed ID: 19879544 [TBL] [Abstract][Full Text] [Related]
13. Wavelength and Fibrosis Affect Phase Singularity Locations During Atrial Fibrillation. Saha M; Roney CH; Bayer JD; Meo M; Cochet H; Dubois R; Vigmond EJ Front Physiol; 2018; 9():1207. PubMed ID: 30246796 [TBL] [Abstract][Full Text] [Related]
14. Finite element analysis of cardiac defibrillation current distributions. Sepulveda NG; Wikswo JP; Echt DS IEEE Trans Biomed Eng; 1990 Apr; 37(4):354-65. PubMed ID: 2338348 [TBL] [Abstract][Full Text] [Related]
15. Energy levels for defibrillation: what is of real clinical importance? Fotuhi PC; Epstein AE; Ideker RE Am J Cardiol; 1999 Mar; 83(5B):24D-33D. PubMed ID: 10089836 [TBL] [Abstract][Full Text] [Related]
16. Simulated internal defibrillation in humans using an anatomically realistic three-dimensional finite element model of the thorax. Kinst TF; Sweeney MO; Lehr JL; Eisenberg SR J Cardiovasc Electrophysiol; 1997 May; 8(5):537-47. PubMed ID: 9160230 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation. Sánchez J; Gomez JF; Martinez-Mateu L; Romero L; Saiz J; Trenor B Front Physiol; 2019; 10():847. PubMed ID: 31333496 [No Abstract] [Full Text] [Related]
18. Do intramural virtual electrodes facilitate successful defibrillation? Model-based analysis of experimental evidence. Hooks DA; Trew ML; Smaill BH; Pullan AJ J Cardiovasc Electrophysiol; 2006 Mar; 17(3):305-11. PubMed ID: 16643406 [TBL] [Abstract][Full Text] [Related]
19. The role of conductivity discontinuities in design of cardiac defibrillation. Lim H; Cun W; Wang Y; Gray RA; Glimm J Chaos; 2018 Jan; 28(1):013106. PubMed ID: 29390616 [TBL] [Abstract][Full Text] [Related]
20. Influence of epicardial patches on defibrillation threshold with nonthoracotomy lead configurations. Fotuhi PC; Ideker RE; Idriss SF; Callihan RL; Walker RG; Alt EU Circulation; 1995 Nov; 92(10):3082-8. PubMed ID: 7586279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]