These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 31001407)
1. Design and Workspace Analysis of a Parallel Ankle Rehabilitation Robot (PARR). Zhang L; Li J; Dong M; Fang B; Cui Y; Zuo S; Zhang K J Healthc Eng; 2019; 2019():4164790. PubMed ID: 31001407 [TBL] [Abstract][Full Text] [Related]
2. State of the art in parallel ankle rehabilitation robot: a systematic review. Dong M; Zhou Y; Li J; Rong X; Fan W; Zhou X; Kong Y J Neuroeng Rehabil; 2021 Mar; 18(1):52. PubMed ID: 33743757 [TBL] [Abstract][Full Text] [Related]
3. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects. Miao Q; Zhang M; Wang C; Li H J Healthc Eng; 2018; 2018():1534247. PubMed ID: 29736230 [TBL] [Abstract][Full Text] [Related]
4. Design and Experimental Research of 3-RRS Parallel Ankle Rehabilitation Robot. Zou Y; Zhang A; Zhang Q; Zhang B; Wu X; Qin T Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744564 [TBL] [Abstract][Full Text] [Related]
5. A spherical parallel three degrees-of-freedom robot for ankle-foot neuro-rehabilitation. Malosio M; Negri SP; Pedrocchi N; Vicentini F; Caimmi M; Molinari Tosatti L Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3356-9. PubMed ID: 23366645 [TBL] [Abstract][Full Text] [Related]
6. A multi-degree-of-freedom reconfigurable ankle rehabilitation robot with adjustable workspace for post-stroke lower limb ankle rehabilitation. Meng Q; Liu G; Xu X; Meng Q; Qin L; Yu H Front Bioeng Biotechnol; 2023; 11():1323645. PubMed ID: 38076434 [No Abstract] [Full Text] [Related]
7. Screw theory based mathematical modeling and kinematic analysis of a novel ankle rehabilitation robot with a constrained 3-PSP mechanism topology. Liao Z; Yao L; Lu Z; Zhang J Int J Intell Robot Appl; 2018; 2(3):351-360. PubMed ID: 30294664 [TBL] [Abstract][Full Text] [Related]
8. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. Ao D; Song R; Gao J IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719 [TBL] [Abstract][Full Text] [Related]
9. Design and Performance Evaluation of a Novel Wearable Parallel Mechanism for Ankle Rehabilitation. Zuo S; Li J; Dong M; Zhou X; Fan W; Kong Y Front Neurorobot; 2020; 14():9. PubMed ID: 32132917 [TBL] [Abstract][Full Text] [Related]
10. [Kinematics analysis and scale optimization of four degree of freedom generalized spherical parallel mechanism for ankle joint rehabilitation]. Liu X; Zhang J; Liu C; Niu J; Qi K; Guo S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):286-294. PubMed ID: 33913288 [TBL] [Abstract][Full Text] [Related]
11. Design of an exoskeleton ankle robot for robot-assisted gait training of stroke patients. Yeung LF; Ockenfeld C; Pang MK; Wai HW; Soo OY; Li SW; Tong KY IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():211-215. PubMed ID: 28813820 [TBL] [Abstract][Full Text] [Related]
12. Research on an Ankle Joint Auxiliary Rehabilitation Robot with a Rigid-Flexible Hybrid Drive Based on a 2-S'PS' Mechanism. Wang C; Wang L; Wang T; Li H; Du W; Meng F; Zhang W Appl Bionics Biomech; 2019; 2019():7071064. PubMed ID: 31396290 [TBL] [Abstract][Full Text] [Related]
13. A Novel Evaluation Index and Optimization Method for Ankle Rehabilitation Robots Based on Ankle-Foot Motion. Zhang J; Ma Z; Wei J; Yang S; Liu C; Guo S J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36537826 [TBL] [Abstract][Full Text] [Related]
14. Neuro-Rehabilitation Therapy with T-FLEX Ankle Exoskeleton and Serious Games: A Case Study. Gomez-Vargas D; Pino A; Garzon A; Roberti F; Carelli R; Munera M; Cifuentes CA IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941237 [TBL] [Abstract][Full Text] [Related]
15. A review on the mechanical design elements of ankle rehabilitation robot. Khalid YM; Gouwanda D; Parasuraman S Proc Inst Mech Eng H; 2015 Jun; 229(6):452-63. PubMed ID: 25979442 [TBL] [Abstract][Full Text] [Related]
16. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot. Feng Y; Wang H; Yan H; Wang X; Jin Z; Vladareanu L J Healthc Eng; 2017; 2017():1523068. PubMed ID: 29065571 [TBL] [Abstract][Full Text] [Related]
17. [Kinematics and workspace analysis of a spherical exoskeleton parallel mechanism]. Zhao Y; Xia H; Yao Y; Li R Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):213-222. PubMed ID: 31016937 [TBL] [Abstract][Full Text] [Related]
18. Recognizing Continuous Multiple Degrees of Freedom Foot Movements With Inertial Sensors. Zhu C; Luo L; Mai J; Wang Q IEEE Trans Neural Syst Rehabil Eng; 2022; 30():431-440. PubMed ID: 35130162 [TBL] [Abstract][Full Text] [Related]
19. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot. Ai Q; Zhu C; Zuo J; Meng W; Liu Q; Xie SQ; Yang M Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29283406 [TBL] [Abstract][Full Text] [Related]
20. Retracted: Design and Workspace Analysis of a Parallel Ankle Rehabilitation Robot (PARR). Engineering JOH J Healthc Eng; 2021; 2021():7345780. PubMed ID: 33564389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]