These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 31001528)
1. Fibronectin Functionalized Electrospun Fibers by Using Benign Solvents: Best Way to Achieve Effective Functionalization. Liverani L; Killian MS; Boccaccini AR Front Bioeng Biotechnol; 2019; 7():68. PubMed ID: 31001528 [TBL] [Abstract][Full Text] [Related]
2. Incorporation of Calcium Containing Mesoporous (MCM-41-Type) Particles in Electrospun PCL Fibers by Using Benign Solvents. Liverani L; Boccardi E; Beltrán AM; Boccaccini AR Polymers (Basel); 2017 Oct; 9(10):. PubMed ID: 30965790 [TBL] [Abstract][Full Text] [Related]
3. Thiol-ene conjugation of VEGF peptide to electrospun scaffolds as potential application for angiogenesis. Yao T; Chen H; Wang R; Rivero R; Wang F; Kessels L; Agten SM; Hackeng TM; Wolfs TGAM; Fan D; Baker MB; Moroni L Bioact Mater; 2023 Feb; 20():306-317. PubMed ID: 35755423 [TBL] [Abstract][Full Text] [Related]
4. Versatile Production of Poly(Epsilon-Caprolactone) Fibers by Electrospinning Using Benign Solvents. Liverani L; Boccaccini AR Nanomaterials (Basel); 2016 Apr; 6(4):. PubMed ID: 28335202 [TBL] [Abstract][Full Text] [Related]
5. Functionalization of electrospun fibers of poly(epsilon-caprolactone) with star shaped NCO-poly(ethylene glycol)-stat-poly(propylene glycol) for neuronal cell guidance. Klinkhammer K; Bockelmann J; Simitzis C; Brook GA; Grafahrend D; Groll J; Möller M; Mey J; Klee D J Mater Sci Mater Med; 2010 Sep; 21(9):2637-51. PubMed ID: 20567886 [TBL] [Abstract][Full Text] [Related]
6. Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Silva JC; Udangawa RN; Chen J; Mancinelli CD; Garrudo FFF; Mikael PE; Cabral JMS; Ferreira FC; Linhardt RJ Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110291. PubMed ID: 31761240 [TBL] [Abstract][Full Text] [Related]
7. Functionalization of Electrospun Nanofibers and Fiber Alignment Enhance Neural Stem Cell Proliferation and Neuronal Differentiation. Amores de Sousa MC; Rodrigues CAV; Ferreira IAF; Diogo MM; Linhardt RJ; Cabral JMS; Ferreira FC Front Bioeng Biotechnol; 2020; 8():580135. PubMed ID: 33195141 [TBL] [Abstract][Full Text] [Related]
8. Electrospun poly(ε-caprolactone)/poly(glycerol sebacate) aligned fibers fabricated with benign solvents for tendon tissue engineering. Iorio F; El Khatib M; Wöltinger N; Turriani M; Di Giacinto O; Mauro A; Russo V; Barboni B; Boccaccini AR J Biomed Mater Res A; 2025 Jan; 113(1):e37794. PubMed ID: 39295227 [TBL] [Abstract][Full Text] [Related]
9. Electrospun azido-PCL nanofibers for enhanced surface functionalization by click chemistry. Lancuški A; Fort S; Bossard F ACS Appl Mater Interfaces; 2012 Dec; 4(12):6499-504. PubMed ID: 23145558 [TBL] [Abstract][Full Text] [Related]
10. Glycosaminoglycan functionalization of electrospun scaffolds enhances Schwann cell activity. Idini M; Wieringa P; Rocchiccioli S; Nieddu G; Ucciferri N; Formato M; Lepedda A; Moroni L Acta Biomater; 2019 Sep; 96():188-202. PubMed ID: 31265920 [TBL] [Abstract][Full Text] [Related]
11. Poly(ε-caprolactone)/bioactive glass composite electrospun fibers for tissue engineering applications. Piatti E; Miola M; Liverani L; Verné E; Boccaccini AR J Biomed Mater Res A; 2023 Nov; 111(11):1692-1709. PubMed ID: 37300320 [TBL] [Abstract][Full Text] [Related]
12. Coaxially electrospun scaffolds based on hydroxyl-functionalized poly(ε-caprolactone) and loaded with VEGF for tissue engineering applications. Seyednejad H; Ji W; Yang F; van Nostrum CF; Vermonden T; van den Beucken JJ; Dhert WJ; Hennink WE; Jansen JA Biomacromolecules; 2012 Nov; 13(11):3650-60. PubMed ID: 23039047 [TBL] [Abstract][Full Text] [Related]
13. Surface Entrapment of Fibronectin on Electrospun PLGA Scaffolds for Periodontal Tissue Engineering. Campos DM; Gritsch K; Salles V; Attik GN; Grosgogeat B Biores Open Access; 2014 Jun; 3(3):117-26. PubMed ID: 24940563 [TBL] [Abstract][Full Text] [Related]
14. In situ ornamenting poly(ε-caprolactone) electrospun fibers with different fiber diameters using chondrocyte-derived extracellular matrix for chondrogenesis of mesenchymal stem cells. Xu J; Fang Q; Liu Y; Zhou Y; Ye Z; Tan WS Colloids Surf B Biointerfaces; 2021 Jan; 197():111374. PubMed ID: 33032177 [TBL] [Abstract][Full Text] [Related]
15. Development and Characterization of Furfuryl-Gelatin Electrospun Scaffolds for Cardiac Tissue Engineering. Nagiah N; El Khoury R; Othman MH; Akimoto J; Ito Y; Roberson DA; Joddar B ACS Omega; 2022 Apr; 7(16):13894-13905. PubMed ID: 35559153 [TBL] [Abstract][Full Text] [Related]
16. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. Jing X; Mi HY; Wang XC; Peng XF; Turng LS ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418 [TBL] [Abstract][Full Text] [Related]
17. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Jin G; Lee S; Kim SH; Kim M; Jang JH Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552 [TBL] [Abstract][Full Text] [Related]