These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31001567)

  • 1. Theoretical optimization of high-frequency optogenetic spiking of red-shifted very fast-Chrimson-expressing neurons.
    Gupta N; Bansal H; Roy S
    Neurophotonics; 2019 Apr; 6(2):025002. PubMed ID: 31001567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Analysis of Low-power Bidirectional Optogenetic Control of High-frequency Neural Codes with Single Spike Resolution.
    Bansal H; Gupta N; Roy S
    Neuroscience; 2020 Nov; 449():165-188. PubMed ID: 32941934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of low-power, high-frequency and temporally precise optogenetic inhibition of spiking in NpHR, eNpHR3.0 and Jaws-expressing neurons.
    Bansal H; Gupta N; Roy S
    Biomed Phys Eng Express; 2020 May; 6(4):045011. PubMed ID: 33444272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical analysis of low-power fast optogenetic control of firing of Chronos-expressing neurons.
    Saran S; Gupta N; Roy S
    Neurophotonics; 2018 Apr; 5(2):025009. PubMed ID: 29845088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-expressing fast channelrhodopsin with step-function opsin overcomes spike failure due to photocurrent desensitization in optogenetics: a theoretical study.
    Bansal H; Pyari G; Roy S
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35320791
    [No Abstract]   [Full Text] [Related]  

  • 6. Theoretical analysis of optogenetic spiking with ChRmine, bReaChES and CsChrimson-expressing neurons for retinal prostheses.
    Bansal H; Gupta N; Roy S
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229315
    [No Abstract]   [Full Text] [Related]  

  • 7. Utility of red-light ultrafast optogenetic stimulation of the auditory pathway.
    Bali B; Lopez de la Morena D; Mittring A; Mager T; Rankovic V; Huet AT; Moser T
    EMBO Mol Med; 2021 Jun; 13(6):e13391. PubMed ID: 33960685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-low power deep sustained optogenetic excitation of human ventricular cardiomyocytes with red-shifted opsins: a computational study.
    Pyari G; Bansal H; Roy S
    J Physiol; 2022 Nov; 600(21):4653-4676. PubMed ID: 36068951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics.
    Mager T; Lopez de la Morena D; Senn V; Schlotte J; D Errico A; Feldbauer K; Wrobel C; Jung S; Bodensiek K; Rankovic V; Browne L; Huet A; Jüttner J; Wood PG; Letzkus JJ; Moser T; Bamberg E
    Nat Commun; 2018 May; 9(1):1750. PubMed ID: 29717130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent optical excitation of distinct neural populations.
    Klapoetke NC; Murata Y; Kim SS; Pulver SR; Birdsey-Benson A; Cho YK; Morimoto TK; Chuong AS; Carpenter EJ; Tian Z; Wang J; Xie Y; Yan Z; Zhang Y; Chow BY; Surek B; Melkonian M; Jayaraman V; Constantine-Paton M; Wong GK; Boyden ES
    Nat Methods; 2014 Mar; 11(3):338-46. PubMed ID: 24509633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A kinetic-optimized CoChR variant with enhanced high-frequency spiking fidelity.
    Bi X; Beck C; Gong Y
    Biophys J; 2022 Nov; 121(21):4166-4178. PubMed ID: 36151721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the red light-activated channelrhodopsin Chrimson.
    Oda K; Vierock J; Oishi S; Rodriguez-Rozada S; Taniguchi R; Yamashita K; Wiegert JS; Nishizawa T; Hegemann P; Nureki O
    Nat Commun; 2018 Sep; 9(1):3949. PubMed ID: 30258177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterned Stimulation of the Chrimson Opsin in Glutamatergic Motor Thalamus Neurons Improves Forelimb Akinesia in Parkinsonian Rats.
    Kip E; Bentall L; Underwood CF; Hughes SM; Parr-Brownlie LC
    Neuroscience; 2022 Dec; 507():64-78. PubMed ID: 36343721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling Optogenetic Subthreshold Effects.
    Luo JW; Nikolic K; Degenaar P
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6136-6140. PubMed ID: 31947244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the accuracy and computational cost of spiking neuron implementation.
    Valadez-Godínez S; Sossa H; Santiago-Montero R
    Neural Netw; 2020 Feb; 122():196-217. PubMed ID: 31689679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual Color Neural Activation and Behavior Control with Chrimson and CoChR in Caenorhabditis elegans.
    Schild LC; Glauser DA
    Genetics; 2015 Aug; 200(4):1029-34. PubMed ID: 26022242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spatial pattern of light determines the kinetics and modulates backpropagation of optogenetic action potentials.
    Grossman N; Simiaki V; Martinet C; Toumazou C; Schultz SR; Nikolic K
    J Comput Neurosci; 2013 Jun; 34(3):477-88. PubMed ID: 23179855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):39-55. PubMed ID: 8783228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical coupling between model midbrain dopamine neurons: effects on firing pattern and synchrony.
    Komendantov AO; Canavier CC
    J Neurophysiol; 2002 Mar; 87(3):1526-41. PubMed ID: 11877524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast-spiking Interneurons Contribute to Propofol-induced Facilitation of Firing Synchrony in Pyramidal Neurons of the Rat Insular Cortex.
    Koyanagi Y; Oi Y; Kobayashi M
    Anesthesiology; 2021 Feb; 134(2):219-233. PubMed ID: 33332534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.