BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31001712)

  • 1. BcMAF2 activates BcTEM1 and represses flowering in Pak-choi (Brassica rapa ssp. chinensis).
    Huang F; Liu T; Tang J; Duan W; Hou X
    Plant Mol Biol; 2019 May; 100(1-2):19-32. PubMed ID: 31001712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and functional characterization of a floral repressor, BcFLC2, from Pak-choi (Brassica rapa ssp. chinensis).
    Huang F; Liu T; Wang J; Hou X
    Planta; 2018 Aug; 248(2):423-435. PubMed ID: 29761290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and Functional Characterization of a Floral Repressor,
    Huang F; Liu T; Hou X
    Front Plant Sci; 2018; 9():290. PubMed ID: 29559991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BcAP3, a MADS box gene, controls stamen development and male sterility in Pak-choi (Brassica rapa ssp. chinensis).
    Huang F; Zhang Y; Hou X
    Gene; 2020 Jul; 747():144698. PubMed ID: 32325091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and Functional Analysis of
    Hou H; Zhang C; Hou X
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Functional Characterization of a Cold-Related Protein, BcHHP5, in Pak-Choi (
    Wang J; Huang F; You X; Hou X
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30587842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BrABF3 promotes flowering through the direct activation of CONSTANS transcription in pak choi.
    Zhang C; Zhou Q; Liu W; Wu X; Li Z; Xu Y; Li Y; Imaizumi T; Hou X; Liu T
    Plant J; 2022 Jul; 111(1):134-148. PubMed ID: 35442527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ETHYLENE RESPONSE FACTOR 070 inhibits flowering in Pak-choi by indirectly impairing BcLEAFY expression.
    Yu Z; Chen X; Li Y; Shah SHA; Xiao D; Wang J; Hou X; Liu T; Li Y
    Plant Physiol; 2024 May; 195(2):986-1004. PubMed ID: 38269601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergence of the genetic contribution of FRIGIDA homologues in regulating the flowering time in Brassica rapa ssp. rapa.
    Zheng Y; Gao Z; Luo L; Wang Y; Chen Q; Yang Y; Kong X; Yang Y
    Gene; 2021 Sep; 796-797():145790. PubMed ID: 34175395
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification and characterization of the gene BraANS.A03 associated with purple leaf color in pak choi (Brassica rapa L. ssp. chinensis).
    Tan C; Chen H; Dai G; Liu Y; Shen W; Wang C; Liu D; Liu S; Xu S; Zhu B; Chen D; Cui C
    Planta; 2023 Jun; 258(1):19. PubMed ID: 37314587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Relative Electron Transport Rate Contributes to Increased Photosynthetic Capacity in Autotetraploid Pak Choi.
    Zhang C; Wang H; Xu Y; Zhang S; Wang J; Hu B; Hou X; Li Y; Liu T
    Plant Cell Physiol; 2020 Apr; 61(4):761-774. PubMed ID: 31904850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional identification of genes responsible for the biosynthesis of 1-methoxy-indol-3-ylmethyl-glucosinolate in Brassica rapa ssp. chinensis.
    Wiesner M; Schreiner M; Zrenner R
    BMC Plant Biol; 2014 May; 14():124. PubMed ID: 24886080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BcNAC056 Interacts with BcWRKY1 to Regulate Leaf Senescence in Pak Choi.
    Yuan S; Wang Y; Hu D; Zhu W; Xiao D; Liu T; Hou X; Li Y
    Plant Cell Physiol; 2023 Sep; 64(9):1091-1105. PubMed ID: 37566556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BcWRKY1 confers salt sensitivity via inhibiting Reactive oxygen species scavenging.
    Yuan S; Hu D; Wang Y; Shao C; Liu T; Zhang C; Cheng F; Hou X; Li Y
    Plant Mol Biol; 2022 Aug; 109(6):741-759. PubMed ID: 35553313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pak choi (Brassica rapa L. ssp. chinensis) cultivars.
    Yu R; Li D; Du X; Xia S; Liu C; Shi G
    BMC Genomics; 2017 Aug; 18(1):587. PubMed ID: 28789614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and expression of glucosinolate synthesis genes CYP83A1 and CYP83B1 in Pak Choi (Brassica rapa L. ssp. chinensis var. communis (N. Tsen & S.H. Lee) Hanelt).
    Zhu B; Wang Z; Yang J; Zhu Z; Wang H
    Int J Mol Sci; 2012; 13(5):5832-5843. PubMed ID: 22754334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of a Pak Choi Gene,
    Lin Y; Hou H; Zhang Y; Hou X
    Genes (Basel); 2021 Jan; 12(1):. PubMed ID: 33467565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistance to white rust in pak choi and Chinese cabbage at the cotyledon stage.
    Santos MR; Dias JS; Silva MJ; Ferreira-Pinto MM
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):963-71. PubMed ID: 17390845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectopic expression of a phytochrome B gene from Chinese cabbage (Brassica rapa L. ssp. pekinensis) in Arabidopsis thaliana promotes seedling de-etiolation, dwarfing in mature plants, and delayed flowering.
    Song MF; Zhang S; Hou P; Shang HZ; Gu HK; Li JJ; Xiao Y; Guo L; Su L; Gao JW; Yang JP
    Plant Mol Biol; 2015 Apr; 87(6):633-43. PubMed ID: 25724426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and co-expression analysis of WRKY orthologs involved in responses to multiple abiotic stresses in Pak-choi (Brassica campestris ssp. chinensis).
    Tang J; Wang F; Wang Z; Huang Z; Xiong A; Hou X
    BMC Plant Biol; 2013 Nov; 13():188. PubMed ID: 24267479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.