These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 31001712)
1. BcMAF2 activates BcTEM1 and represses flowering in Pak-choi (Brassica rapa ssp. chinensis). Huang F; Liu T; Tang J; Duan W; Hou X Plant Mol Biol; 2019 May; 100(1-2):19-32. PubMed ID: 31001712 [TBL] [Abstract][Full Text] [Related]
2. Isolation and functional characterization of a floral repressor, BcFLC2, from Pak-choi (Brassica rapa ssp. chinensis). Huang F; Liu T; Wang J; Hou X Planta; 2018 Aug; 248(2):423-435. PubMed ID: 29761290 [TBL] [Abstract][Full Text] [Related]
3. Isolation and Functional Characterization of a Floral Repressor, Huang F; Liu T; Hou X Front Plant Sci; 2018; 9():290. PubMed ID: 29559991 [TBL] [Abstract][Full Text] [Related]
4. BcAP3, a MADS box gene, controls stamen development and male sterility in Pak-choi (Brassica rapa ssp. chinensis). Huang F; Zhang Y; Hou X Gene; 2020 Jul; 747():144698. PubMed ID: 32325091 [TBL] [Abstract][Full Text] [Related]
5. Cloning and Functional Analysis of Hou H; Zhang C; Hou X Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326634 [TBL] [Abstract][Full Text] [Related]
6. Identification and Functional Characterization of a Cold-Related Protein, BcHHP5, in Pak-Choi ( Wang J; Huang F; You X; Hou X Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30587842 [TBL] [Abstract][Full Text] [Related]
7. BrABF3 promotes flowering through the direct activation of CONSTANS transcription in pak choi. Zhang C; Zhou Q; Liu W; Wu X; Li Z; Xu Y; Li Y; Imaizumi T; Hou X; Liu T Plant J; 2022 Jul; 111(1):134-148. PubMed ID: 35442527 [TBL] [Abstract][Full Text] [Related]
8. ETHYLENE RESPONSE FACTOR 070 inhibits flowering in Pak-choi by indirectly impairing BcLEAFY expression. Yu Z; Chen X; Li Y; Shah SHA; Xiao D; Wang J; Hou X; Liu T; Li Y Plant Physiol; 2024 May; 195(2):986-1004. PubMed ID: 38269601 [TBL] [Abstract][Full Text] [Related]
9. Divergence of the genetic contribution of FRIGIDA homologues in regulating the flowering time in Brassica rapa ssp. rapa. Zheng Y; Gao Z; Luo L; Wang Y; Chen Q; Yang Y; Kong X; Yang Y Gene; 2021 Sep; 796-797():145790. PubMed ID: 34175395 [No Abstract] [Full Text] [Related]
10. Identification and characterization of the gene BraANS.A03 associated with purple leaf color in pak choi (Brassica rapa L. ssp. chinensis). Tan C; Chen H; Dai G; Liu Y; Shen W; Wang C; Liu D; Liu S; Xu S; Zhu B; Chen D; Cui C Planta; 2023 Jun; 258(1):19. PubMed ID: 37314587 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Relative Electron Transport Rate Contributes to Increased Photosynthetic Capacity in Autotetraploid Pak Choi. Zhang C; Wang H; Xu Y; Zhang S; Wang J; Hu B; Hou X; Li Y; Liu T Plant Cell Physiol; 2020 Apr; 61(4):761-774. PubMed ID: 31904850 [TBL] [Abstract][Full Text] [Related]
12. CIRCADIAN CLOCK-ASSOCIATED1 Delays Flowering by Directly Inhibiting the Transcription of He Y; Xiao D; Jiang C; Li Y; Hou X Plants (Basel); 2024 Aug; 13(16):. PubMed ID: 39204626 [TBL] [Abstract][Full Text] [Related]
13. Functional identification of genes responsible for the biosynthesis of 1-methoxy-indol-3-ylmethyl-glucosinolate in Brassica rapa ssp. chinensis. Wiesner M; Schreiner M; Zrenner R BMC Plant Biol; 2014 May; 14():124. PubMed ID: 24886080 [TBL] [Abstract][Full Text] [Related]
14. BcNAC056 Interacts with BcWRKY1 to Regulate Leaf Senescence in Pak Choi. Yuan S; Wang Y; Hu D; Zhu W; Xiao D; Liu T; Hou X; Li Y Plant Cell Physiol; 2023 Sep; 64(9):1091-1105. PubMed ID: 37566556 [TBL] [Abstract][Full Text] [Related]
15. BcWRKY1 confers salt sensitivity via inhibiting Reactive oxygen species scavenging. Yuan S; Hu D; Wang Y; Shao C; Liu T; Zhang C; Cheng F; Hou X; Li Y Plant Mol Biol; 2022 Aug; 109(6):741-759. PubMed ID: 35553313 [TBL] [Abstract][Full Text] [Related]
16. Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pak choi (Brassica rapa L. ssp. chinensis) cultivars. Yu R; Li D; Du X; Xia S; Liu C; Shi G BMC Genomics; 2017 Aug; 18(1):587. PubMed ID: 28789614 [TBL] [Abstract][Full Text] [Related]
17. Isolation and expression of glucosinolate synthesis genes CYP83A1 and CYP83B1 in Pak Choi (Brassica rapa L. ssp. chinensis var. communis (N. Tsen & S.H. Lee) Hanelt). Zhu B; Wang Z; Yang J; Zhu Z; Wang H Int J Mol Sci; 2012; 13(5):5832-5843. PubMed ID: 22754334 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of a Pak Choi Gene, Lin Y; Hou H; Zhang Y; Hou X Genes (Basel); 2021 Jan; 12(1):. PubMed ID: 33467565 [TBL] [Abstract][Full Text] [Related]
19. Resistance to white rust in pak choi and Chinese cabbage at the cotyledon stage. Santos MR; Dias JS; Silva MJ; Ferreira-Pinto MM Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):963-71. PubMed ID: 17390845 [TBL] [Abstract][Full Text] [Related]
20. Ectopic expression of a phytochrome B gene from Chinese cabbage (Brassica rapa L. ssp. pekinensis) in Arabidopsis thaliana promotes seedling de-etiolation, dwarfing in mature plants, and delayed flowering. Song MF; Zhang S; Hou P; Shang HZ; Gu HK; Li JJ; Xiao Y; Guo L; Su L; Gao JW; Yang JP Plant Mol Biol; 2015 Apr; 87(6):633-43. PubMed ID: 25724426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]