BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 31001747)

  • 1. Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis.
    Shin M; Kim JW; Ye S; Kim S; Jeong D; Lee DY; Kim JN; Jin YS; Kim KH; Kim SR
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5435-5446. PubMed ID: 31001747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.
    Kim SR; Ha SJ; Kong II; Jin YS
    Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae.
    Suga H; Matsuda F; Hasunuma T; Ishii J; Kondo A
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1669-78. PubMed ID: 22851014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.
    Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS
    J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning novel sugar transporters from Scheffersomyces (Pichia) stipitis allowing D-xylose fermentation by recombinant Saccharomyces cerevisiae.
    de Sales BB; Scheid B; Gonçalves DL; Knychala MM; Matsushika A; Bon EP; Stambuk BU
    Biotechnol Lett; 2015 Oct; 37(10):1973-82. PubMed ID: 26087949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insertional tagging of the Scheffersomyces stipitis gene HEM25 involved in regulation of glucose and xylose alcoholic fermentation.
    Berezka K; Semkiv M; Borbuliak M; Blomqvist J; Linder T; Ruchała J; Dmytruk K; Passoth V; Sibirny A
    Cell Biol Int; 2021 Mar; 45(3):507-517. PubMed ID: 31829471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system.
    Karagöz P; Özkan M
    Bioresour Technol; 2014 Apr; 158():286-93. PubMed ID: 24614063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars.
    Hughes SR; Gibbons WR; Bang SS; Pinkelman R; Bischoff KM; Slininger PJ; Qureshi N; Kurtzman CP; Liu S; Saha BC; Jackson JS; Cotta MA; Rich JO; Javers JE
    J Ind Microbiol Biotechnol; 2012 Jan; 39(1):163-73. PubMed ID: 21748309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes.
    Konishi J; Fukuda A; Mutaguchi K; Uemura T
    Biotechnol Lett; 2015 Aug; 37(8):1623-30. PubMed ID: 25994575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124.
    Su YK; Willis LB; Jeffries TW
    Biotechnol Bioeng; 2015 Mar; 112(3):457-69. PubMed ID: 25164099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis.
    Jo JH; Park YC; Jin YS; Seo JH
    Bioresour Technol; 2017 Oct; 241():88-94. PubMed ID: 28550778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A; Sawayama S
    Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic flux analysis for metabolome data validation of naturally xylose-fermenting yeasts.
    Veras HCT; Campos CG; Nascimento IF; Abdelnur PV; Almeida JRM; Parachin NS
    BMC Biotechnol; 2019 Aug; 19(1):58. PubMed ID: 31382948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Matsushika A; Inoue H; Murakami K; Takimura O; Sawayama S
    Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis.
    Jetti KD; Gns RR; Garlapati D; Nammi SK
    Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic improvement of native xylose-fermenting yeasts for ethanol production.
    Harner NK; Wen X; Bajwa PK; Austin GD; Ho CY; Habash MB; Trevors JT; Lee H
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):1-20. PubMed ID: 25404205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.