BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31001862)

  • 1. CO
    Wunder T; Oh ZG; Mueller-Cajar O
    Traffic; 2019 Jun; 20(6):380-389. PubMed ID: 31001862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger.
    Wunder T; Cheng SLH; Lai SK; Li HY; Mueller-Cajar O
    Nat Commun; 2018 Nov; 9(1):5076. PubMed ID: 30498228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle.
    Mackinder LC; Meyer MT; Mettler-Altmann T; Chen VK; Mitchell MC; Caspari O; Freeman Rosenzweig ES; Pallesen L; Reeves G; Itakura A; Roth R; Sommer F; Geimer S; Mühlhaus T; Schroda M; Goodenough U; Stitt M; Griffiths H; Jonikas MC
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5958-63. PubMed ID: 27166422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structural basis of Rubisco phase separation in the pyrenoid.
    He S; Chou HT; Matthies D; Wunder T; Meyer MT; Atkinson N; Martinez-Sanchez A; Jeffrey PD; Port SA; Patena W; He G; Chen VK; Hughson FM; McCormick AJ; Mueller-Cajar O; Engel BD; Yu Z; Jonikas MC
    Nat Plants; 2020 Dec; 6(12):1480-1490. PubMed ID: 33230314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Condensation of Rubisco into a proto-pyrenoid in higher plant chloroplasts.
    Atkinson N; Mao Y; Chan KX; McCormick AJ
    Nat Commun; 2020 Dec; 11(1):6303. PubMed ID: 33298923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pyrenoidal linker protein EPYC1 phase separates with hybrid Arabidopsis-Chlamydomonas Rubisco through interactions with the algal Rubisco small subunit.
    Atkinson N; Velanis CN; Wunder T; Clarke DJ; Mueller-Cajar O; McCormick AJ
    J Exp Bot; 2019 Oct; 70(19):5271-5285. PubMed ID: 31504763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Eukaryotic CO
    Freeman Rosenzweig ES; Xu B; Kuhn Cuellar L; Martinez-Sanchez A; Schaffer M; Strauss M; Cartwright HN; Ronceray P; Plitzko JM; Förster F; Wingreen NS; Engel BD; Mackinder LCM; Jonikas MC
    Cell; 2017 Sep; 171(1):148-162.e19. PubMed ID: 28938114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The algal pyrenoid: key unanswered questions.
    Meyer MT; Whittaker C; Griffiths H
    J Exp Bot; 2017 Jun; 68(14):3739-3749. PubMed ID: 28911054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrenoids: CO
    Barrett J; Girr P; Mackinder LCM
    Biochim Biophys Acta Mol Cell Res; 2021 Apr; 1868(5):118949. PubMed ID: 33421532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SAGA1 and SAGA2 promote starch formation around proto-pyrenoids in Arabidopsis chloroplasts.
    Atkinson N; Stringer R; Mitchell SR; Seung D; McCormick AJ
    Proc Natl Acad Sci U S A; 2024 Jan; 121(4):e2311013121. PubMed ID: 38241434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Rubisco-binding protein is required for normal pyrenoid number and starch sheath morphology in
    Itakura AK; Chan KX; Atkinson N; Pallesen L; Wang L; Reeves G; Patena W; Caspari O; Roth R; Goodenough U; McCormick AJ; Griffiths H; Jonikas MC
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18445-18454. PubMed ID: 31455733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the pyrenoid-based CO
    Fei C; Wilson AT; Mangan NM; Wingreen NS; Jonikas MC
    Nat Plants; 2022 May; 8(5):583-595. PubMed ID: 35596080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Spatial Interactome Reveals the Protein Organization of the Algal CO
    Mackinder LCM; Chen C; Leib RD; Patena W; Blum SR; Rodman M; Ramundo S; Adams CM; Jonikas MC
    Cell; 2017 Sep; 171(1):133-147.e14. PubMed ID: 28938113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New horizons for building pyrenoid-based CO2-concentrating mechanisms in plants to improve yields.
    Adler L; Díaz-Ramos A; Mao Y; Pukacz KR; Fei C; McCormick AJ
    Plant Physiol; 2022 Oct; 190(3):1609-1627. PubMed ID: 35961043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Rubisco kinetics and pyrenoid morphology in shaping the CCM of haptophyte microalgae.
    Heureux AMC; Young JN; Whitney SM; Eason-Hubbard MR; Lee RBY; Sharwood RE; Rickaby REM
    J Exp Bot; 2017 Jun; 68(14):3959-3969. PubMed ID: 28582571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pyrenoid: the eukaryotic CO2-concentrating organelle.
    He S; Crans VL; Jonikas MC
    Plant Cell; 2023 Sep; 35(9):3236-3259. PubMed ID: 37279536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism in Chlamydomonas reinhardtii.
    Mitchell MC; Metodieva G; Metodiev MV; Griffiths H; Meyer MT
    J Exp Bot; 2017 Jun; 68(14):3891-3902. PubMed ID: 28520898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rubisco small-subunit α-helices control pyrenoid formation in Chlamydomonas.
    Meyer MT; Genkov T; Skepper JN; Jouhet J; Mitchell MC; Spreitzer RJ; Griffiths H
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19474-9. PubMed ID: 23112177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The intracellular localization of ribulose-1,5-bisphosphate Carboxylase/Oxygenase in chlamydomonas reinhardtii.
    Borkhsenious ON; Mason CB; Moroney JV
    Plant Physiol; 1998 Apr; 116(4):1585-91. PubMed ID: 9536077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrenoid loss in Chlamydomonas reinhardtii causes limitations in CO2 supply, but not thylakoid operating efficiency.
    Caspari OD; Meyer MT; Tolleter D; Wittkopp TM; Cunniffe NJ; Lawson T; Grossman AR; Griffiths H
    J Exp Bot; 2017 Jun; 68(14):3903-3913. PubMed ID: 28911055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.