BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31001872)

  • 1. A gamma-thionin protein from apple, MdD1, is required for defence against S-RNase-induced inhibition of pollen tube prior to self/non-self recognition.
    Gu Z; Li W; Doughty J; Meng D; Yang Q; Yuan H; Li Y; Chen Q; Yu J; Liu CS; Li T
    Plant Biotechnol J; 2019 Nov; 17(11):2184-2198. PubMed ID: 31001872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apple MdABCF assists in the transportation of S-RNase into pollen tubes.
    Meng D; Gu Z; Li W; Wang A; Yuan H; Yang Q; Li T
    Plant J; 2014 Jun; 78(6):990-1002. PubMed ID: 24684704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apple S-RNase interacts with an actin-binding protein, MdMVG, to reduce pollen tube growth by inhibiting its actin-severing activity at the early stage of self-pollination induction.
    Yang Q; Meng D; Gu Z; Li W; Chen Q; Li Y; Yuan H; Yu J; Liu C; Li T
    Plant J; 2018 Jul; 95(1):41-56. PubMed ID: 29667261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apple S-RNase triggers inhibition of tRNA aminoacylation by interacting with a soluble inorganic pyrophosphatase in growing self-pollen tubes in vitro.
    Li W; Meng D; Gu Z; Yang Q; Yuan H; Li Y; Chen Q; Yu J; Liu C; Li T
    New Phytol; 2018 Apr; 218(2):579-593. PubMed ID: 29424440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The apple MdPTI1L kinase is phosphorylated by MdOXI1 during S-RNase-induced reactive oxygen species signaling in pollen tubes.
    Wu C; Gu Z; Li T; Yu J; Liu C; Fan W; Wang B; Jiang F; Zhang Q; Li W
    Plant Sci; 2021 Apr; 305():110824. PubMed ID: 33691959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The microtubule cytoskeleton and pollen tube Golgi vesicle system are required for in vitro S-RNase internalization and gametic self-incompatibility in apple.
    Meng D; Gu Z; Yuan H; Wang A; Li W; Yang Q; Zhu Y; Li T
    Plant Cell Physiol; 2014 May; 55(5):977-89. PubMed ID: 24503865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyamines Involved in Regulating Self-Incompatibility in Apple.
    Yu J; Wang B; Fan W; Fan S; Xu Y; Liu C; Lv T; Liu W; Wu L; Xian L; Li T
    Genes (Basel); 2021 Nov; 12(11):. PubMed ID: 34828403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-(in)compatibility in Tunisian apple accessions [Malus domestica. Borkh]: S-genotypes identification and pollen tube growth analysis.
    Abdallah D; Ben Mustapha S; Balti I; Salhi-Hannachi A; Baraket G
    Planta; 2024 Apr; 259(6):137. PubMed ID: 38683389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of multiple F-box genes linked to the S9- and S10-RNase in apple (Malus × domestica Borkh.).
    Okada K; Moriya S; Haji T; Abe K
    Plant Reprod; 2013 Jun; 26(2):101-11. PubMed ID: 23686223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convergent evolution at the gametophytic self-incompatibility system in Malus and Prunus.
    Aguiar B; Vieira J; Cunha AE; Fonseca NA; Iezzoni A; van Nocker S; Vieira CP
    PLoS One; 2015; 10(5):e0126138. PubMed ID: 25993016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and genetic characterization of a self-compatible apple cultivar, 'CAU-1'.
    Li W; Yang Q; Gu Z; Wu C; Meng D; Yu J; Chen Q; Li Y; Yuan H; Wang D; Li T
    Plant Sci; 2016 Nov; 252():162-175. PubMed ID: 27717452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of citrus.
    Liang M; Yang W; Su S; Fu L; Yi H; Chen C; Deng X; Chai L
    Mol Genet Genomics; 2017 Apr; 292(2):325-341. PubMed ID: 27933381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased sorbitol synthesis leads to abnormal stamen development and reduced pollen tube growth via an MYB transcription factor, MdMYB39L, in apple (Malus domestica).
    Meng D; He M; Bai Y; Xu H; Dandekar AM; Fei Z; Cheng L
    New Phytol; 2018 Jan; 217(2):641-656. PubMed ID: 29027668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of major lysine residues of S(3)-RNase of Petunia inflata involved in ubiquitin-26S proteasome-mediated degradation in vitro.
    Hua Z; Kao TH
    Plant J; 2008 Jun; 54(6):1094-104. PubMed ID: 18346191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Ca
    Qu HY; Zhang Z; Wu F; Wang Y
    Cell Calcium; 2016 Nov; 60(5):299-308. PubMed ID: 27397621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel gene, MdSSK1, as a component of the SCF complex rather than MdSBP1 can mediate the ubiquitination of S-RNase in apple.
    Yuan H; Meng D; Gu Z; Li W; Wang A; Yang Q; Zhu Y; Li T
    J Exp Bot; 2014 Jul; 65(12):3121-31. PubMed ID: 24759884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase separation of S-RNase promotes self-incompatibility in Petunia hybrida.
    Tian H; Zhang H; Huang H; Zhang Y; Xue Y
    J Integr Plant Biol; 2024 May; 66(5):986-1006. PubMed ID: 37963073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-RNases from self-incompatible and -compatible apple cultivars: purification, cloning, enzymic properties, and pollen tube growth inhibitory activity.
    Katoh N; Goto K; Asano J; Fukushima K; Yamada K; Kasai A; Li TZ; Takanoha M; Miyairi K; Okuno T
    Biosci Biotechnol Biochem; 2002 Jun; 66(6):1185-95. PubMed ID: 12162537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of G-protein regulators and stylar S-RNase on the growth and Ca2+ concentration of Pyrus pyrifolia pollen tube].
    Zhao CP; Xu GH; Zhang SL; Liu ZQ; Wang CL
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Oct; 33(5):395-401. PubMed ID: 17960042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of SFBB-containing canonical and noncanonical SCF complexes in pollen of apple (Malus × domestica).
    Minamikawa MF; Koyano R; Kikuchi S; Koba T; Sassa H
    PLoS One; 2014; 9(5):e97642. PubMed ID: 24847858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.