BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 31002234)

  • 1. Zeolite-Templated Carbon as the Cathode for a High Energy Density Dual-Ion Battery.
    Dubey RJ; Nüssli J; Piveteau L; Kravchyk KV; Rossell MD; Campanini M; Erni R; Kovalenko MV; Stadie NP
    ACS Appl Mater Interfaces; 2019 May; 11(19):17686-17696. PubMed ID: 31002234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zeolite-Templated Carbon as an Ordered Microporous Electrode for Aluminum Batteries.
    Stadie NP; Wang S; Kravchyk KV; Kovalenko MV
    ACS Nano; 2017 Feb; 11(2):1911-1919. PubMed ID: 28134514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zeolite-Templated Carbon as a Stable, High Power Magnesium-Ion Cathode Material.
    Dubey RJ; Colijn T; Aebli M; Hanson EE; Widmer R; Kravchyk KV; Kovalenko MV; Stadie NP
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39902-39909. PubMed ID: 31580637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dual-Ion Battery.
    Xiang L; Ou X; Wang X; Zhou Z; Li X; Tang Y
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):17924-17930. PubMed ID: 32558980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized Kinetics Match and Charge Balance Toward Potassium Ion Hybrid Capacitors with Ultrahigh Energy and Power Densities.
    Peng Y; Zhang R; Fan B; Li W; Chen Z; Liu H; Gao P; Ni S; Liu J; Chen X
    Small; 2020 Oct; 16(42):e2003724. PubMed ID: 32985107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvation Structure Modulation of High-Voltage Electrolyte for High-Performance K-Based Dual-Graphite Battery.
    Han C; Wang H; Wang Z; Ou X; Tang Y
    Adv Mater; 2023 Jun; 35(24):e2300917. PubMed ID: 37015009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Potassium Storage Performance for K-Te Batteries
    Zhang Y; Liu C; Wu Z; Manaig D; Freschi DJ; Wang Z; Liu J
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16345-16354. PubMed ID: 33787196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyimide-Based Aqueous Potassium Energy Storage Systems Using Concentrated WiSE Electrolyte.
    Vardhini G; Dilip PS; Kumar SA; Suriyakumar S; Hariharan M; Shaijumon MM
    ACS Appl Mater Interfaces; 2024 Jan; ():. PubMed ID: 38165729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentrated Electrolyte for High-Performance Ca-Ion Battery Based on Organic Anode and Graphite Cathode.
    Li J; Han C; Ou X; Tang Y
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202116668. PubMed ID: 34994498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual stabilization in potassium Prussian blue and cathode/electrolyte interface enables advanced potassium-ion full-cells.
    Lin Y; Liu J; Shi L; Guo N; Sun Z; Geng C; Jiang J; Zhuang Q; Chen Y; Ju Z
    J Colloid Interface Sci; 2022 Oct; 623():1-8. PubMed ID: 35561573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse Dual-Ion Battery via a ZnCl
    Wu X; Xu Y; Zhang C; Leonard DP; Markir A; Lu J; Ji X
    J Am Chem Soc; 2019 Apr; 141(15):6338-6344. PubMed ID: 30917652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methodological Studies of the Mechanism of Anion Insertion in Nanometer-Sized Carbon Micropores.
    Welty C; Taylor EE; Posey S; Vailati P; Kravchyk KV; Kovalenko MV; Stadie NP
    ChemSusChem; 2023 Feb; 16(4):e202201847. PubMed ID: 36350785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium Dual-Ion Hybrid Batteries with Ultrahigh Rate Performance and Excellent Cycling Stability.
    Ding X; Zhang F; Ji B; Liu Y; Li J; Lee CS; Tang Y
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42294-42300. PubMed ID: 30451488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of KPF
    Deng L; Zhang Y; Wang R; Feng M; Niu X; Tan L; Zhu Y
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22449-22456. PubMed ID: 31150200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Practical Aqueous Calcium-Ion Battery Full-Cells for Future Stationary Storage.
    Adil M; Sarkar A; Roy A; Panda MR; Nagendra A; Mitra S
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11489-11503. PubMed ID: 32073827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Dual-Ion Hybrid Supercapacitor Based on a NiCo
    Li Y; Tang F; Wang R; Wang C; Liu J
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30232-30238. PubMed ID: 27797167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights on Electrochemical Behaviors of Sodium Peroxide as a Sacrificial Cathode Additive for Boosting Energy Density of Na-Ion Battery.
    Guo YJ; Niu YB; Wei Z; Zhang SY; Meng Q; Li H; Yin YX; Guo YG
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2772-2778. PubMed ID: 33400478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous Interphase Optimizations on the Large-Area Anode and Cathode of High-Energy-Density Lithium-Ion Pouch Cells by a Multiple Additives Strategy.
    Zang XF; Li Z; Fang Y; Hong Y; Yang S; Peng Z; Sun S
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46084-46094. PubMed ID: 32955849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesh-Like Carbon Nanosheets with High-Level Nitrogen Doping for High-Energy Dual-Carbon Lithium-Ion Capacitors.
    Li Z; Cao L; Chen W; Huang Z; Liu H
    Small; 2019 Apr; 15(15):e1805173. PubMed ID: 30861630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.