BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 31002246)

  • 1. Biodegradation Profiles of Proanthocyanidin-Accumulating Alfalfa Plants Coexpressing Lc- bHLH and C1-MYB Transcriptive Flavanoid Regulatory Genes.
    Heendeniya RG; Gruber MY; Lei Y; Yu P
    J Agric Food Chem; 2019 May; 67(17):4793-4799. PubMed ID: 31002246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene-Transformation-Induced Changes in Chemical Functional Group Features and Molecular Structure Conformation in Alfalfa Plants Co-Expressing Lc-bHLH and C1-MYB Transcriptive Flavanoid Regulatory Genes: Effects of Single-Gene and Two-Gene Insertion.
    Heendeniya RG; Yu P
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28335521
    [No Abstract]   [Full Text] [Related]  

  • 3. Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maize Lc.
    Ray H; Yu M; Auser P; Blahut-Beatty L; McKersie B; Bowley S; Westcott N; Coulman B; Lloyd A; Gruber MY
    Plant Physiol; 2003 Jul; 132(3):1448-63. PubMed ID: 12857826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis of protein structure in proanthocyanidin and anthocyanin-enhanced Lc-transgenic alfalfa in relation to nutritive value using synchrotron-radiation FTIR microspectroscopy: a novel approach.
    Yu P; Jonker A; Gruber M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 73(5):846-53. PubMed ID: 19457717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentation, degradation and microbial nitrogen partitioning for three forage colour phenotypes within anthocyanidin-accumulating Lc-alfalfa progeny.
    Jonker A; Gruber MY; Wang Y; Narvaez N; Coulman B; McKinnon JJ; Christensen DA; Azarfar A; Yu P
    J Sci Food Agric; 2012 Aug; 92(11):2265-73. PubMed ID: 22337233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ectopic expression of tea MYB genes alter spatial flavonoid accumulation in alfalfa (Medicago sativa).
    Zheng G; Fan C; Di S; Wang X; Gao L; Dzyubenko N; Chapurin V; Pang Y
    PLoS One; 2019; 14(7):e0218336. PubMed ID: 31265465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling degradation ratios and nutrient availability of anthocyanidin-accumulating Lc-alfalfa populations in dairy cows.
    Jonker A; Gruber MY; Wang Y; Coulman B; Azarfar A; McKinnon JJ; Christensen DA; Yu P
    J Dairy Sci; 2011 Mar; 94(3):1430-44. PubMed ID: 21338808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene-Silencing-Induced Changes in Carbohydrate Conformation in Relation to Bioenergy Value and Carbohydrate Subfractions in Modeled Plant (Medicago sativa) with Down-Regulation of HB12 and TT8 Transcription Factors.
    Li X; Hannoufa A; Zhang Y; Yu P
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation with TT8 and HB12 RNAi Constructs in Model Forage (Medicago sativa, Alfalfa) Affects Carbohydrate Structure and Metabolic Characteristics in Ruminant Livestock Systems.
    Li X; Zhang Y; Hannoufa A; Yu P
    J Agric Food Chem; 2015 Nov; 63(43):9590-600. PubMed ID: 26492548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago.
    Peel GJ; Pang Y; Modolo LV; Dixon RA
    Plant J; 2009 Jul; 59(1):136-49. PubMed ID: 19368693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Proanthocyanidins Complex in Structure and Nutrition Interaction in Alfalfa Forage.
    Jonker A; Yu P
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27223279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silencing
    Lei Y; Hannoufa A; Prates LL; Christensen D; Wang Y; Yu P
    J Agric Food Chem; 2019 Jul; 67(28):7898-7907. PubMed ID: 31282664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of TT8 and HB12 Silencing on the Relations between the Molecular Structures of Alfalfa ( Medicago sativa) Plants and Their Nutritional Profiles and In Vitro Gas Production.
    Lei Y; Hannoufa A; Prates LL; Shi H; Wang Y; Biligetu B; Christensen D; Yu P
    J Agric Food Chem; 2018 Jun; 66(22):5602-5611. PubMed ID: 29750520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of silencing TT8 and HB12 on in vitro nutrients degradation and VFA production in relation to molecular structures of alfalfa (Medicago sativa).
    Lei Y; Hannoufa A; Wang Y; Christensen D; Yu P
    J Sci Food Agric; 2019 Dec; 99(15):6850-6858. PubMed ID: 31385316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage.
    Lei Y; Hannoufa A; Yu P
    Int J Mol Sci; 2017 Jan; 18(2):. PubMed ID: 28146083
    [No Abstract]   [Full Text] [Related]  

  • 16. Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in the legumes Trifolium repens and Medicago sativa.
    Hancock KR; Collette V; Fraser K; Greig M; Xue H; Richardson K; Jones C; Rasmussen S
    Plant Physiol; 2012 Jul; 159(3):1204-20. PubMed ID: 22566493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of alfalfa (Medicago sativa) silage chop length and inclusion rate within a total mixed ration on the ability of lactating dairy cows to cope with a short-term feed withholding and refeeding challenge.
    Thomson AL; Humphries DJ; Crompton LA; Reynolds CK
    J Dairy Sci; 2018 May; 101(5):4180-4192. PubMed ID: 29454691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor.
    Xie DY; Sharma SB; Wright E; Wang ZY; Dixon RA
    Plant J; 2006 Mar; 45(6):895-907. PubMed ID: 16507081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of replacing alfalfa with panicled-tick clover or sericea lespedeza in corn-alfalfa-based substrates on in vitro ruminal methane production.
    Naumann HD; Lambert BD; Armstrong SA; Fonseca MA; Tedeschi LO; Muir JP; Ellersieck MR
    J Dairy Sci; 2015 Jun; 98(6):3980-7. PubMed ID: 25864051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgenic rice lines expressing maize C1 and R-S regulatory genes produce various flavonoids in the endosperm.
    Shin YM; Park HJ; Yim SD; Baek NI; Lee CH; An G; Woo YM
    Plant Biotechnol J; 2006 May; 4(3):303-15. PubMed ID: 17147636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.