BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31002505)

  • 1. Interactions of Water and Alkanes: Modifying Additive Force Fields to Account for Polarization Effects.
    Krämer A; Pickard FC; Huang J; Venable RM; Simmonett AC; Reith D; Kirschner KN; Pastor RW; Brooks BR
    J Chem Theory Comput; 2019 Jun; 15(6):3854-3867. PubMed ID: 31002505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-range Lennard-Jones and electrostatic interactions in interfaces: application of the isotropic periodic sum method.
    Klauda JB; Wu X; Pastor RW; Brooks BR
    J Phys Chem B; 2007 May; 111(17):4393-400. PubMed ID: 17425357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulations of lipid bilayers using the CHARMM36 force field with the TIP3P-FB and TIP4P-FB water models.
    Sajadi F; Rowley CN
    PeerJ; 2018; 6():e5472. PubMed ID: 30128211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force Field Benchmark of Amino Acids: I. Hydration and Diffusion in Different Water Models.
    Zhang H; Yin C; Jiang Y; van der Spoel D
    J Chem Inf Model; 2018 May; 58(5):1037-1052. PubMed ID: 29648448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized Magnesium Force Field Parameters for Biomolecular Simulations with Accurate Solvation, Ion-Binding, and Water-Exchange Properties in SPC/E, TIP3P-fb, TIP4P/2005, TIP4P-Ew, and TIP4P-D.
    Grotz KK; Schwierz N
    J Chem Theory Comput; 2022 Jan; 18(1):526-537. PubMed ID: 34881568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Parametrization of Divalent Metal Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models.
    Li Z; Song LF; Li P; Merz KM
    J Chem Theory Comput; 2020 Jul; 16(7):4429-4442. PubMed ID: 32510956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations.
    Joung IS; Cheatham TE
    J Phys Chem B; 2008 Jul; 112(30):9020-41. PubMed ID: 18593145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drude Polarizable Lipid Force Field with Explicit Treatment of Long-Range Dispersion: Parametrization and Validation for Saturated and Monounsaturated Zwitterionic Lipids.
    Yu Y; Venable RM; Thirman J; Chatterjee P; Kumar A; Pastor RW; Roux B; MacKerell AD; Klauda JB
    J Chem Theory Comput; 2023 May; 19(9):2590-2605. PubMed ID: 37071552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational Design of Nonbonded Point Charge Models for Highly Charged Metal Cations with Lennard-Jones 12-6 Potential.
    Zhang Y; Jiang Y; Qiu Y; Zhang H
    J Chem Inf Model; 2021 Sep; 61(9):4613-4629. PubMed ID: 34467756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of polarizability in the modeling of solubility: quantifying the effect of solute polarizability on the solubility of small nonpolar solutes in popular models of water.
    Dyer PJ; Docherty H; Cummings PT
    J Chem Phys; 2008 Jul; 129(2):024508. PubMed ID: 18624539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface.
    Bauer BA; Warren GL; Patel S
    J Chem Theory Comput; 2009 Feb; 5(2):359-373. PubMed ID: 23133341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of an Electrostatic Energy-Based Charge Model for Modeling the Electrostatic Interactions in Water Solvent.
    Wang X; Wang Y; Guo M; Wang X; Li Y; Zhang JZH
    J Chem Theory Comput; 2023 Sep; 19(18):6294-6312. PubMed ID: 37656610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Additive and Polarizable Models with Explicit Treatment of Long-Range Lennard-Jones Interactions Using Alkane Simulations.
    Leonard AN; Simmonett AC; Pickard FC; Huang J; Venable RM; Klauda JB; Brooks BR; Pastor RW
    J Chem Theory Comput; 2018 Feb; 14(2):948-958. PubMed ID: 29268012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the transferability of ion parameters to the TIP4P/2005 water model using molecular dynamics simulations.
    Döpke MF; Moultos OA; Hartkamp R
    J Chem Phys; 2020 Jan; 152(2):024501. PubMed ID: 31941316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of linear and branched alkane interactions with water to simulate hydrophobic hydration.
    Ashbaugh HS; Liu L; Surampudi LN
    J Chem Phys; 2011 Aug; 135(5):054510. PubMed ID: 21823715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational Design of Nonbonded Point Charge Models for Divalent Metal Cations with Lennard-Jones 12-6 Potential.
    Zhang Y; Jiang Y; Peng J; Zhang H
    J Chem Inf Model; 2021 Aug; 61(8):4031-4044. PubMed ID: 34313132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of electrostatics in modulating hydrophobic interactions and barriers to hydrophobic assembly.
    Bauer BA; Patel S
    J Phys Chem B; 2010 Jun; 114(24):8107-17. PubMed ID: 20509706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvation free energies of amino acid side chain analogs for common molecular mechanics water models.
    Shirts MR; Pande VS
    J Chem Phys; 2005 Apr; 122(13):134508. PubMed ID: 15847482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.