These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31002523)

  • 81. Type-II ZnO/ZnS core-shell nanowires: Earth-abundant photoanode for solar-driven photoelectrochemical water splitting.
    Hassan MA; Johar MA; Waseem A; Bagal IV; Ha JS; Ryu SW
    Opt Express; 2019 Feb; 27(4):A184-A196. PubMed ID: 30876134
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode.
    Ding C; Qin W; Wang N; Liu G; Wang Z; Yan P; Shi J; Li C
    Phys Chem Chem Phys; 2014 Aug; 16(29):15608-14. PubMed ID: 24956231
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation.
    Chen YW; Prange JD; Dühnen S; Park Y; Gunji M; Chidsey CE; McIntyre PC
    Nat Mater; 2011 Jun; 10(7):539-44. PubMed ID: 21685904
    [TBL] [Abstract][Full Text] [Related]  

  • 84. WO
    Ma Z; Song K; Wang L; Gao F; Tang B; Hou H; Yang W
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):889-897. PubMed ID: 30560657
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The solution-phase process of a g-C
    Zhang B; Zhao SY; Wang HH; Zhao TJ; Liu YX; Lv LB; Wei X; Li XH; Chen JS
    Chem Commun (Camb); 2017 Sep; 53(76):10544-10547. PubMed ID: 28890982
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes.
    Lin F; Boettcher SW
    Nat Mater; 2014 Jan; 13(1):81-6. PubMed ID: 24292419
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Core-shell photoanode developed by atomic layer deposition of Bi₂O₃ on Si nanowires for enhanced photoelectrochemical water splitting.
    Weng B; Xu F; Xu J
    Nanotechnology; 2014 Nov; 25(45):455402. PubMed ID: 25338216
    [TBL] [Abstract][Full Text] [Related]  

  • 89. An integrated n-Si/BiVO
    Wang S; Feng S; Liu B; Gong Z; Wang T; Gong J
    Chem Sci; 2023 Feb; 14(8):2192-2199. PubMed ID: 36845941
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Controlled Design of Functional Nano-Coatings: Reduction of Loss Mechanisms in Photoelectrochemical Water Splitting.
    Landsmann S; Surace Y; Trottmann M; Dilger S; Weidenkaff A; Pokrant S
    ACS Appl Mater Interfaces; 2016 May; 8(19):12149-57. PubMed ID: 27159411
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Layer-by-Layer Assembly of Polyoxometalates for Photoelectrochemical (PEC) Water Splitting: Toward Modular PEC Devices.
    Jeon D; Kim H; Lee C; Han Y; Gu M; Kim BS; Ryu J
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40151-40161. PubMed ID: 29099571
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Suppression of poisoning of photocathode catalysts in photoelectrochemical cells for highly stable sunlight-driven overall water splitting.
    Kaneko H; Minegishi T; Kobayashi H; Kuang Y; Domen K
    J Chem Phys; 2019 Jan; 150(4):041713. PubMed ID: 30709278
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Impact of Electrocatalyst Activity and Ion Permeability on Water-Splitting Photoanodes.
    Lin F; Bachman BF; Boettcher SW
    J Phys Chem Lett; 2015 Jul; 6(13):2427-33. PubMed ID: 26266713
    [TBL] [Abstract][Full Text] [Related]  

  • 94. An n-Si/n-Fe2O3 heterojunction tandem photoanode for solar water splitting.
    van de Krol R; Liang Y
    Chimia (Aarau); 2013; 67(3):168-71. PubMed ID: 23574957
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Al
    Cheng Q; Benipal MK; Liu Q; Wang X; Crozier PA; Chan CK; Nemanich RJ
    ACS Appl Mater Interfaces; 2017 May; 9(19):16138-16147. PubMed ID: 28441470
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Efficient Hole Extraction from a Hole-Storage-Layer-Stabilized Tantalum Nitride Photoanode for Solar Water Splitting.
    Liu G; Fu P; Zhou L; Yan P; Ding C; Shi J; Li C
    Chemistry; 2015 Jun; 21(27):9624-8. PubMed ID: 26032659
    [TBL] [Abstract][Full Text] [Related]  

  • 97. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting.
    Yan L; Zhao W; Liu Z
    Dalton Trans; 2016 Jul; 45(28):11346-52. PubMed ID: 27328331
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Insight into the Transition-Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation.
    Ning X; Du P; Han Z; Chen J; Lu X
    Angew Chem Int Ed Engl; 2021 Feb; 60(7):3504-3509. PubMed ID: 33105064
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Sacrificial Interlayer for Promoting Charge Transport in Hematite Photoanode.
    Zhang K; Dong T; Xie G; Guan L; Guo B; Xiang Q; Dai Y; Tian L; Batool A; Jan SU; Boddula R; Thebo AA; Gong JR
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42723-42733. PubMed ID: 29193959
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Ultrafast fabrication of highly active BiVO
    Kim JH; Jo YH; Kim JH; Lee JS
    Nanoscale; 2016 Oct; 8(40):17623-17631. PubMed ID: 27714102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.