These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31002523)

  • 101. Highly Active GaN-Stabilized Ta
    Zhong M; Hisatomi T; Sasaki Y; Suzuki S; Teshima K; Nakabayashi M; Shibata N; Nishiyama H; Katayama M; Yamada T; Domen K
    Angew Chem Int Ed Engl; 2017 Apr; 56(17):4739-4743. PubMed ID: 28323376
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Composition and Band Gap Tailoring of Crystalline (GaN)
    Li J; Liu B; Wu A; Yang B; Yang W; Liu F; Zhang X; An V; Jiang X
    Inorg Chem; 2018 May; 57(9):5240-5248. PubMed ID: 29634249
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Enhanced Solar Water Splitting by Swift Charge Separation in Au/FeOOH Sandwiched Single-Crystalline Fe
    Wang L; Nguyen NT; Zhang Y; Bi Y; Schmuki P
    ChemSusChem; 2017 Jul; 10(13):2720-2727. PubMed ID: 28437588
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation.
    Li C; Wang T; Luo Z; Liu S; Gong J
    Small; 2016 Jul; 12(25):3415-22. PubMed ID: 27197643
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Enhanced Photoelectrochemical Water Oxidation Performance on BiVO
    Du J; Zhong X; He H; Huang J; Yang M; Ke G; Wang J; Zhou Y; Dong F; Ren Q; Bian L
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42207-42216. PubMed ID: 30422621
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Thermodynamic and Kinetic Influence of Oxygen Vacancies on the Solar Water Oxidation Reaction of α-Fe
    Yang Q; Du J; Li J; Wu Y; Zhou Y; Yang Y; Yang D; He H
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11625-11634. PubMed ID: 32073812
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Photoelectrochemical Properties and Behavior of α-SnWO
    Zhu Z; Sarker P; Zhao C; Zhou L; Grimm RL; Huda MN; Rao PM
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1459-1470. PubMed ID: 27991759
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Thin silicon via crack-assisted layer exfoliation for photoelectrochemical water splitting.
    Lee Y; Gupta B; Tan HH; Jagadish C; Oh J; Karuturi S
    iScience; 2021 Aug; 24(8):102921. PubMed ID: 34430811
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Activating a Semiconductor-Liquid Junction via Laser-Derived Dual Interfacial Layers for Boosted Photoelectrochemical Water Splitting.
    Jian J; Wang S; Ye Q; Li F; Su G; Liu W; Qu C; Liu F; Li C; Jia L; Novikov AA; Vinokurov VA; Harvey DHS; Shchukin D; Friedrich D; van de Krol R; Wang H
    Adv Mater; 2022 May; 34(19):e2201140. PubMed ID: 35244311
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Solid Polymer Electrolyte-Coated Macroporous Titania Nanotube Photoelectrode for Gas-Phase Water Splitting.
    Amano F; Mukohara H; Shintani A; Tsurui K
    ChemSusChem; 2019 May; 12(9):1925-1930. PubMed ID: 30338662
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Rational Design Combining Morphology and Charge-Dynamic for Hematite/Nickel-Iron Oxide Thin-Layer Photoanodes: Insights into the Role of the Absorber/Catalyst Junction.
    Orlandi M; Berardi S; Mazzi A; Caramori S; Boaretto R; Nart F; Bignozzi CA; Bazzanella N; Patel N; Miotello A
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48002-48012. PubMed ID: 31797662
    [TBL] [Abstract][Full Text] [Related]  

  • 112. General Considerations for Improving Photovoltage in Metal-Insulator-Semiconductor Photoanodes.
    Digdaya IA; Trześniewski BJ; Adhyaksa GWP; Garnett EC; Smith WA
    J Phys Chem C Nanomater Interfaces; 2018 Mar; 122(10):5462-5471. PubMed ID: 29568340
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Design Principles for Efficient and Stable Water Splitting Photoelectrocatalysts.
    Hemmerling JR; Mathur A; Linic S
    Acc Chem Res; 2021 Apr; 54(8):1992-2002. PubMed ID: 33794089
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Charge-Carrier Dynamics at the CuWO
    Shadabipour P; Raithel AL; Hamann TW
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50592-50599. PubMed ID: 33119249
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Stable and efficient solar-driven photoelectrochemical water splitting into H
    Wei S; Chang S; Yang F; Fu Z; Liu G; Xu X
    Chem Commun (Camb); 2021 May; 57(36):4412-4415. PubMed ID: 33949405
    [TBL] [Abstract][Full Text] [Related]  

  • 116. The effect of the photochemical environment on photoanodes for photoelectrochemical water splitting.
    Huang X; Li Y; Gao X; Xue Q; Zhang R; Gao Y; Han Z; Shao M
    Dalton Trans; 2020 Sep; 49(35):12338-12344. PubMed ID: 32844844
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Metal-Free Carbon-Based Nanomaterial Coatings Protect Silicon Photoanodes in Solar Water-Splitting.
    Yoon K; Lee JH; Kang J; Kang J; Moody MJ; Hersam MC; Lauhon LJ
    Nano Lett; 2016 Dec; 16(12):7370-7375. PubMed ID: 27960516
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Surface photovoltage spectroscopy observes junctions and carrier separation in gallium nitride nanowire arrays for overall water-splitting.
    Doughty RM; Chowdhury FA; Mi Z; Osterloh FE
    J Chem Phys; 2020 Oct; 153(14):144707. PubMed ID: 33086834
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Scheelite-related MBi
    Li S; Bychkov KL; Butenko DS; Terebilenko KV; Zhu Y; Han W; Baumer VN; Slobodyanik MS; Ji H; Klyui NI
    Dalton Trans; 2020 Feb; 49(7):2345-2355. PubMed ID: 32022074
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Modeling the Photostability of Solar Water-Splitting Devices and Stabilization Strategies.
    Nandjou F; Haussener S
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43095-43108. PubMed ID: 36122305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.