BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 31002797)

  • 1. SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species.
    Tian X; Firsanov D; Zhang Z; Cheng Y; Luo L; Tombline G; Tan R; Simon M; Henderson S; Steffan J; Goldfarb A; Tam J; Zheng K; Cornwell A; Johnson A; Yang JN; Mao Z; Manta B; Dang W; Zhang Z; Vijg J; Wolfe A; Moody K; Kennedy BK; Bohmann D; Gladyshev VN; Seluanov A; Gorbunova V
    Cell; 2019 Apr; 177(3):622-638.e22. PubMed ID: 31002797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIRT6 is a DNA double-strand break sensor.
    Onn L; Portillo M; Ilic S; Cleitman G; Stein D; Kaluski S; Shirat I; Slobodnik Z; Einav M; Erdel F; Akabayov B; Toiber D
    Elife; 2020 Jan; 9():. PubMed ID: 31995034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIRT6 rescues the age related decline in base excision repair in a PARP1-dependent manner.
    Xu Z; Zhang L; Zhang W; Meng D; Zhang H; Jiang Y; Xu X; Van Meter M; Seluanov A; Gorbunova V; Mao Z
    Cell Cycle; 2015; 14(2):269-76. PubMed ID: 25607651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks.
    Van Meter M; Simon M; Tombline G; May A; Morello TD; Hubbard BP; Bredbenner K; Park R; Sinclair DA; Bohr VA; Gorbunova V; Seluanov A
    Cell Rep; 2016 Sep; 16(10):2641-2650. PubMed ID: 27568560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The deacetylase SIRT6 promotes the repair of UV-induced DNA damage by targeting DDB2.
    Geng A; Tang H; Huang J; Qian Z; Qin N; Yao Y; Xu Z; Chen H; Lan L; Xie H; Zhang J; Jiang Y; Mao Z
    Nucleic Acids Res; 2020 Sep; 48(16):9181-9194. PubMed ID: 32789493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergy between SIRT1 and SIRT6 helps recognize DNA breaks and potentiates the DNA damage response and repair in humans and mice.
    Meng F; Qian M; Peng B; Peng L; Wang X; Zheng K; Liu Z; Tang X; Zhang S; Sun S; Cao X; Pang Q; Zhao B; Ma W; Songyang Z; Xu B; Zhu WG; Xu X; Liu B
    Elife; 2020 Jun; 9():. PubMed ID: 32538779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIRT6 mono-ADP ribosylates KDM2A to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair.
    Rezazadeh S; Yang D; Biashad SA; Firsanov D; Takasugi M; Gilbert M; Tombline G; Bhanu NV; Garcia BA; Seluanov A; Gorbunova V
    Aging (Albany NY); 2020 Jun; 12(12):11165-11184. PubMed ID: 32584788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sirtuin 6: linking longevity with genome and epigenome stability.
    Korotkov A; Seluanov A; Gorbunova V
    Trends Cell Biol; 2021 Dec; 31(12):994-1006. PubMed ID: 34281779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA repair kinetics in SCID mice Sertoli cells and DNA-PKcs-deficient mouse embryonic fibroblasts.
    Ahmed EA; Vélaz E; Rosemann M; Gilbertz KP; Scherthan H
    Chromosoma; 2017 Mar; 126(2):287-298. PubMed ID: 27136939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIRT6 protein deacetylase interacts with MYH DNA glycosylase, APE1 endonuclease, and Rad9-Rad1-Hus1 checkpoint clamp.
    Hwang BJ; Jin J; Gao Y; Shi G; Madabushi A; Yan A; Guan X; Zalzman M; Nakajima S; Lan L; Lu AL
    BMC Mol Biol; 2015 Jun; 16():12. PubMed ID: 26063178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators.
    Klein MA; Denu JM
    J Biol Chem; 2020 Aug; 295(32):11021-11041. PubMed ID: 32518153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SIRT6 in DNA repair, metabolism and ageing.
    Lombard DB; Schwer B; Alt FW; Mostoslavsky R
    J Intern Med; 2008 Feb; 263(2):128-41. PubMed ID: 18226091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair kinetics of DNA double-strand breaks and incidence of apoptosis in mouse neural stem/progenitor cells and their differentiated neurons exposed to ionizing radiation.
    Kashiwagi H; Shiraishi K; Sakaguchi K; Nakahama T; Kodama S
    J Radiat Res; 2018 May; 59(3):261-271. PubMed ID: 29351627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sirt6 Promotes DNA End Joining in iPSCs Derived from Old Mice.
    Chen W; Liu N; Zhang H; Zhang H; Qiao J; Jia W; Zhu S; Mao Z; Kang J
    Cell Rep; 2017 Mar; 18(12):2880-2892. PubMed ID: 28329681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin and beyond: the multitasking roles for SIRT6.
    Kugel S; Mostoslavsky R
    Trends Biochem Sci; 2014 Feb; 39(2):72-81. PubMed ID: 24438746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of SIRT6 knockdown on NF-κB induction and on residual DNA damage in cultured human skin fibroblasts.
    Goyarts EC; Dong K; Pelle E; Pernodet N
    J Cosmet Sci; 2017; 68(1):25-33. PubMed ID: 29465379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BRCA-related ATM-mediated DNA double-strand break repair and ovarian aging.
    Turan V; Oktay K
    Hum Reprod Update; 2020 Jan; 26(1):43-57. PubMed ID: 31822904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sirtuins: guardians of mammalian healthspan.
    Giblin W; Skinner ME; Lombard DB
    Trends Genet; 2014 Jul; 30(7):271-86. PubMed ID: 24877878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative model of the major pathways for radiation-induced DNA double-strand break repair.
    Belov OV; Krasavin EA; Lyashko MS; Batmunkh M; Sweilam NH
    J Theor Biol; 2015 Feb; 366():115-30. PubMed ID: 25261728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SIRT6 polymorphism rs117385980 is associated with longevity and healthy aging in Finnish men.
    Hirvonen K; Laivuori H; Lahti J; Strandberg T; Eriksson JG; Hackman P
    BMC Med Genet; 2017 Apr; 18(1):41. PubMed ID: 28399814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.