BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31002874)

  • 1. Reciprocal regulation of sulfite oxidation and nitrite reduction by mitochondrial sulfite oxidase.
    Kaczmarek AT; Strampraad MJF; Hagedoorn PL; Schwarz G
    Nitric Oxide; 2019 Aug; 89():22-31. PubMed ID: 31002874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of nitrite-dependent NO synthesis by human sulfite oxidase.
    Bender D; Tobias Kaczmarek A; Niks D; Hille R; Schwarz G
    Biochem J; 2019 Jun; 476(12):1805-1815. PubMed ID: 31167903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the catalytic mechanism of sulfite reductase by X-ray crystallography: structures of the Escherichia coli hemoprotein in complex with substrates, inhibitors, intermediates, and products.
    Crane BR; Siegel LM; Getzoff ED
    Biochemistry; 1997 Oct; 36(40):12120-37. PubMed ID: 9315849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The catalytic mechanism for NO production by the mitochondrial enzyme, sulfite oxidase.
    Mutus B
    Biochem J; 2019 Jul; 476(13):1955-1956. PubMed ID: 31308158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of tyrosine 343 in substrate binding and catalysis by human sulfite oxidase.
    Wilson HL; Rajagopalan KV
    J Biol Chem; 2004 Apr; 279(15):15105-13. PubMed ID: 14729666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfite Oxidase Catalyzes Single-Electron Transfer at Molybdenum Domain to Reduce Nitrite to Nitric Oxide.
    Wang J; Krizowski S; Fischer-Schrader K; Niks D; Tejero J; Sparacino-Watkins C; Wang L; Ragireddy V; Frizzell S; Kelley EE; Zhang Y; Basu P; Hille R; Schwarz G; Gladwin MT
    Antioxid Redox Signal; 2015 Aug; 23(4):283-94. PubMed ID: 25314640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrite-dependent nitric oxide synthesis by molybdenum enzymes.
    Bender D; Schwarz G
    FEBS Lett; 2018 Jun; 592(12):2126-2139. PubMed ID: 29749013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfite reductase structure at 1.6 A: evolution and catalysis for reduction of inorganic anions.
    Crane BR; Siegel LM; Getzoff ED
    Science; 1995 Oct; 270(5233):59-67. PubMed ID: 7569952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A voltammetric study of interdomain electron transfer within sulfite oxidase.
    Elliott SJ; McElhaney AE; Feng C; Enemark JH; Armstrong FA
    J Am Chem Soc; 2002 Oct; 124(39):11612-3. PubMed ID: 12296723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidating the catalytic mechanism of sulfite oxidizing enzymes using structural, spectroscopic, and kinetic analyses.
    Johnson-Winters K; Tollin G; Enemark JH
    Biochemistry; 2010 Aug; 49(34):7242-54. PubMed ID: 20666399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetization of the sulfite and nitrite complexes of oxidized sulfite and nitrite reductases: EPR silent spin S = 1/2 states.
    Day EP; Peterson J; Bonvoisin JJ; Young LJ; Wilkerson JO; Siegel LM
    Biochemistry; 1988 Mar; 27(6):2126-32. PubMed ID: 2837283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The kinetic behavior of chicken liver sulfite oxidase.
    Brody MS; Hille R
    Biochemistry; 1999 May; 38(20):6668-77. PubMed ID: 10350486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of complexes between Escherichia coli sulfite reductase hemoprotein subunit and its substrates sulfite and nitrite.
    Janick PA; Rueger DC; Krueger RJ; Barber MJ; Siegel LM
    Biochemistry; 1983 Jan; 22(2):396-408. PubMed ID: 6297547
    [No Abstract]   [Full Text] [Related]  

  • 14. Oxygen and nitrite reduction by heme-deficient sulphite oxidase in a patient with mild sulphite oxidase deficiency.
    Bender D; Kaczmarek AT; Kuester S; Burlina AB; Schwarz G
    J Inherit Metab Dis; 2020 Jul; 43(4):748-757. PubMed ID: 31950508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic complexities of sulfite oxidase: An enzyme with multiple domains, subunits, and cofactors.
    Enemark JH
    J Inorg Biochem; 2023 Oct; 247():112312. PubMed ID: 37441922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrate reduction: evaluation of its role in nitrite and nitric oxide generation in anoxic tissues.
    Li H; Samouilov A; Liu X; Zweier JL
    Biochemistry; 2003 Feb; 42(4):1150-9. PubMed ID: 12549937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfite-oxidizing enzymes.
    Kappler U; Enemark JH
    J Biol Inorg Chem; 2015 Mar; 20(2):253-64. PubMed ID: 25261289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of exchange of the cysteine molybdenum ligand with selenocysteine on the structure and function of the active site in human sulfite oxidase.
    Reschke S; Niks D; Wilson H; Sigfridsson KG; Haumann M; Rajagopalan KV; Hille R; Leimkühler S
    Biochemistry; 2013 Nov; 52(46):8295-303. PubMed ID: 24147957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. THE REDUCTION OF NITRATE, NITRITE AND HYDROXYLAMINE TO AMMONIA BY ENZYMES FROM CUCURBITA PEPO L. IN THE PRESENCE OF REDUCED BENZYL VIOLOGEN AS ELECTRON DONOR.
    CRESSWELL CF; HAGEMAN RH; HEWITT EJ; HUCKLESBY DP
    Biochem J; 1965 Jan; 94(1):40-53. PubMed ID: 14342247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure studies of oxomolybdenum tetrathiolate complexes: origin of reduction potential differences and relationship to cysteine-molybdenum bonding in sulfite oxidase.
    McNaughton RL; Tipton AA; Rubie ND; Conry RR; Kirk ML
    Inorg Chem; 2000 Dec; 39(25):5697-706. PubMed ID: 11151370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.