BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 31003089)

  • 1. Terrestrial organic matter increases zooplankton methylmercury accumulation in a brown-water boreal lake.
    Poste AE; Hoel CS; Andersen T; Arts MT; Færøvig PJ; Borgå K
    Sci Total Environ; 2019 Jul; 674():9-18. PubMed ID: 31003089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential bioaccumulation of mercury by zooplankton taxa in a mercury-contaminated reservoir Guizhou China.
    Long SX; Hamilton PB; Yang Y; Wang S; Huang WD; Chen C; Tao R
    Environ Pollut; 2018 Aug; 239():147-160. PubMed ID: 29653305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terrestrial diet influences mercury bioaccumulation in zooplankton and macroinvertebrates in lakes with differing dissolved organic carbon concentrations.
    Wu P; Kainz M; Åkerblom S; Bravo AG; Sonesten L; Branfireun B; Deininger A; Bergström AK; Bishop K
    Sci Total Environ; 2019 Jun; 669():821-832. PubMed ID: 30897439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between zooplankton vertical distribution and the concentration of aqueous Hg in boreal lakes: A comparative field study.
    Qin F; Amyot M; Bertolo A
    Sci Total Environ; 2023 Feb; 858(Pt 2):159793. PubMed ID: 36374726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential versus potentially toxic dietary substances: a seasonal comparison of essential fatty acids and methyl mercury concentrations in the planktonic food web.
    Kainz M; Arts MT; Mazumder A
    Environ Pollut; 2008 Sep; 155(2):262-70. PubMed ID: 18166254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental factors influencing mercury speciation in Subarctic and Boreal lakes.
    Braaten HF; de Wit HA; Fjeld E; Rognerud S; Lydersen E; Larssen T
    Sci Total Environ; 2014 Apr; 476-477():336-45. PubMed ID: 24476974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrients mediate the effects of temperature on methylmercury concentrations in freshwater zooplankton.
    Jordan MP; Stewart AR; Eagles-Smith CA; Strecker AL
    Sci Total Environ; 2019 Jun; 667():601-612. PubMed ID: 30833259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal and inter-annual variations in methyl mercury concentrations in zooplankton from boreal lakes impacted by deforestation or natural forest fires.
    Garcia E; Carignan R; Lean DR
    Environ Monit Assess; 2007 Aug; 131(1-3):1-11. PubMed ID: 17171280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccumulation patterns of methyl mercury and essential fatty acids in lacustrine planktonic food webs and fish.
    Kainz M; Telmer K; Mazumder A
    Sci Total Environ; 2006 Sep; 368(1):271-82. PubMed ID: 16226794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylmercury in water, seston, and epiphyton of an Amazonian river and its floodplain, Tapajós River, Brazil.
    Roulet M; Lucotte M; Guimarães JR; Rheault I
    Sci Total Environ; 2000 Oct; 261(1-3):43-59. PubMed ID: 11036976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury biomagnification through food webs is affected by physical and chemical characteristics of lakes.
    Clayden MG; Kidd KA; Wyn B; Kirk JL; Muir DC; O'Driscoll NJ
    Environ Sci Technol; 2013; 47(21):12047-53. PubMed ID: 24099312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Browning-induced changes in trophic functioning of planktonic food webs in temperate and boreal lakes: insights from fatty acids.
    Strandberg U; Hiltunen M; Creed IF; Arts MT; Kankaala P
    Oecologia; 2023 Jan; 201(1):183-197. PubMed ID: 36520221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioaccumulation of mercury in pelagic freshwater food webs.
    Watras CJ; Back RC; Halvorsen S; Hudson RJ; Morrison KA; Wente SP
    Sci Total Environ; 1998 Aug; 219(2-3):183-208. PubMed ID: 9802248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioaccumulation of methylmercury in a marine copepod.
    Lee CS; Fisher NS
    Environ Toxicol Chem; 2017 May; 36(5):1287-1293. PubMed ID: 27764899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic matter drives high interannual variability in methylmercury concentrations in a subarctic coastal sea.
    Soerensen AL; Schartup AT; Skrobonja A; Björn E
    Environ Pollut; 2017 Oct; 229():531-538. PubMed ID: 28646796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic.
    Lescord GL; Kidd KA; Kirk JL; O'Driscoll NJ; Wang X; Muir DC
    Sci Total Environ; 2015 Mar; 509-510():195-205. PubMed ID: 24909711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of algal and bacterial diet on methyl mercury concentrations in zooplankton.
    Kainz M; Mazumder A
    Environ Sci Technol; 2005 Mar; 39(6):1666-72. PubMed ID: 15819223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated temperature and browning increase dietary methylmercury, but decrease essential fatty acids at the base of lake food webs.
    Wu P; Kainz MJ; Valdés F; Zheng S; Winter K; Wang R; Branfireun B; Chen CY; Bishop K
    Sci Rep; 2021 Aug; 11(1):16859. PubMed ID: 34413329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The burning question: does burning before flooding lower methyl mercury production and bioaccumulation?
    Mailman M; Bodaly RA
    Sci Total Environ; 2006 Sep; 368(1):407-17. PubMed ID: 16263153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting enhanced mercury bioaccumulation in inland lakes of Isle Royale National Park, USA.
    Gorski PR; Cleckner LB; Hurley JP; Sierszen ME; Armstrong DE
    Sci Total Environ; 2003 Mar; 304(1-3):327-48. PubMed ID: 12663194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.